Cargando…

When Least Is Best : How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible /

What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining...

Descripción completa

Detalles Bibliográficos
Autor principal: Nahin, Paul J. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2007.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30470
003 MdBmJHUP
005 20230905043224.0
006 m o d
007 cr||||||||nn|n
008 111024t20072004nju o 00 0 eng d
020 |a 9781400841363 
020 |z 0691070784 
020 |z 0691130523 
020 |z 1400841364 
020 |z 9780691070780 
020 |z 9780691130521 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Nahin, Paul J.,  |e author. 
245 1 0 |a When Least Is Best :   |b How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible /   |c Paul J. Nahin ; with a new preface by the author. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2007. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2007. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a "First paperback printing, with a new preface by the author, 2007." 
505 0 |a Minimums, maximums, derivatives, and computers -- The first extremal problems -- Medieval maximization and some modern twists -- The forgotten war of Descartes and Fermat -- Calculus steps forward, center stage -- Beyond calculus -- The modern age begins -- Appendix A. The AM-GM Inequality -- Appendix B. The AM-QM Inequality, and Jensen's Inequality. -- Appendix C. "The sagacity of the bees" (the preface to Book 5 of Pappus' Mathematical collection) -- Appendix D. Every convex figure has a perimeter bisector -- Appendix E. The gravitational free-fall descent time along a circle -- Appendix F. The area enclosed by a closed curve -- Appendix G. Beltrami's identity -- Appendix H. The last word on the lost fisherman problem -- Appendix I. Solution to the new challenge problem. 
520 |a What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible. 
588 |a Description based on print version record. 
650 7 |a Maxima and minima.  |2 fast  |0 (OCoLC)fst01012616 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Calculus.  |2 fast  |0 (OCoLC)fst00844119 
650 7 |a MATHEMATICS  |x History & Philosophy.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Combinatorics.  |2 bisacsh 
650 6 |a Optimisation mathematique. 
650 6 |a Calcul infinitesimal  |x Histoire. 
650 6 |a Mathematiques  |x Histoire. 
650 6 |a Maximums et minimums. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus  |x History. 
650 0 |a Mathematics  |x History. 
650 0 |a Maxima and minima. 
655 7 |a History.  |2 fast  |0 (OCoLC)fst01411628 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30470/ 
945 |a Project MUSE - Custom Collection