Cargando…

In Pursuit of the Traveling Salesman : Mathematics at the Limits of Computation /

"What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied so...

Descripción completa

Detalles Bibliográficos
Autor principal: Cook, William, 1957- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2012.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30450
003 MdBmJHUP
005 20230905043223.0
006 m o d
007 cr||||||||nn|n
008 110826s2012 nju o 00 0 eng d
010 |z  2011030626 
020 |a 9781400839599 
020 |z 9780691152707 
020 |z 9780691163529 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Cook, William,  |d 1957-  |e author. 
245 1 0 |a In Pursuit of the Traveling Salesman :   |b Mathematics at the Limits of Computation /   |c William J. Cook. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2012. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2012. 
300 |a 1 online resource:   |b illustrations (some color), color maps 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Challenges. Tour of the United States -- An impossible task? -- One problem at a time -- Road map of the book -- Origins of the problem. Before the mathematicians -- Euler and Hamilton -- Vienna to Harvard to Princeton -- And on to the RAND Corporation -- A statistical view -- The salesman in action. Road trips -- Mapping genomes -- Aiming telescopes, x-rays, and lasers -- Guiding industrial machines -- Organizing data -- Tests for microprocessors -- Scheduling jobs -- And more -- Searching for a tour. The 48-states problem -- Growing trees and tours -- Alterations while you wait -- Borrowing from physics and biology -- The DIMACS challenge -- Tour champions -- Linear programming. General-purpose model -- The simplex algorithm -- Two for the price of one: LP duality -- The degree LP relaxation of the TSP -- Eliminating subtours -- A perfect relaxation -- Integer programming -- Operations research -- Cutting planes. The cutting-plane method -- A catalog of TSP inequalities -- The separation problem -- Edmonds's glimpse of heaven -- Cutting planes for integer programming -- Branching. Breaking up -- The search party -- Branch-and-bound for integer programming -- Big computing. World records -- The TSP on a grand scale -- Complexity. A model of computation -- The campaign of Jack Edmonds -- Cook's theorem and Karp's list -- State of the TSP -- Do we need computers? -- The human touch. Humans versus computers -- Tour-finding strategies -- The TSP in neuroscience -- Animals solving the TSP -- Aesthetics -- Julian Lethbridge -- Jordan curves -- Continuous lines -- Art and mathematics -- Pushing the limits. 
520 |a "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W.R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a $1 million question. That's the prize the Clay Mathematics Institute is offering to anyone who can solve the problem or prove that it can't be done. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem"--  |c Provided by publisher. 
546 |a English. 
588 |a Description based on print version record. 
650 7 |a Traveling salesman problem.  |2 fast  |0 (OCoLC)fst01155795 
650 7 |a Computational complexity.  |2 fast  |0 (OCoLC)fst00871991 
650 7 |a Vehicle routing problem.  |2 fast  |0 (OCoLC)fst01744165 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Graphic Methods.  |2 bisacsh 
650 6 |a Complexite de calcul (Informatique) 
650 6 |a Problemes de tournees. 
650 0 |a Vehicle routing problem. 
650 0 |a Computational complexity. 
650 0 |a Traveling salesman problem. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30450/ 
945 |a Project MUSE - Custom Collection