Cargando…

Log-Gases and Random Matrices (LMS-34) /

Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembl...

Descripción completa

Detalles Bibliográficos
Autor principal: Forrester, Peter (Peter John)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2010.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30400
003 MdBmJHUP
005 20230905043220.0
006 m o d
007 cr||||||||nn|n
008 100816s2010 nju o 00 0 eng d
020 |a 9781400835416 
020 |z 9780691128290 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Forrester, Peter  |q (Peter John) 
245 1 0 |a Log-Gases and Random Matrices (LMS-34) /   |c P.J. Forrester. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2010. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2010. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society monographs series ;  |v v. 34 
505 0 |a Cover; Title; Copyright; Preface; Contents; Chapter 1. Gaussian matrix ensembles; Chapter 2. Circular ensembles; Chapter 3. Laguerre and Jacobi ensembles; Chapter 4. The Selberg integral; Chapter 5. Correlation functions at ss = 2; Chapter 6. Correlation functions at ss = 1 and 4; Chapter 7. Scaled limits at ss = 1, 2 and 4; Chapter 8. Eigenvalue probabilities Painlev systems approach; Chapter 9. Eigenvalue probabilities Fredholm determinant approach; Chapter 10. Lattice paths and growth models; Chapter 11. The CalogeroSutherland model; Chapter 12. Jack polynomials. 
505 0 |a Chapter 13. Correlations for general ssChapter 14. Fluctuation formulas and universal behavior of correlations; Chapter 15. The two-dimensional one-component plasma; Bibliography; Index. 
520 |a Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory. 
588 |a Description based on print version record. 
650 7 |a Random matrices.  |2 fast  |0 (OCoLC)fst01089803 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Jacobi polynomials.  |2 fast  |0 (OCoLC)fst00981029 
650 7 |a Integral theorems.  |2 fast  |0 (OCoLC)fst00975516 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Matrices.  |2 bisacsh 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 6 |a Mathematiques. 
650 6 |a Theoremes integraux. 
650 6 |a Polynômes de Jacobi. 
650 6 |a Matrices aleatoires. 
650 0 |a Mathematics. 
650 0 |a Integral theorems. 
650 0 |a Jacobi polynomials. 
650 0 |a Random matrices. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30400/ 
945 |a Project MUSE - Custom Collection