Cargando…

How Round Is Your Circle? : Where Engineering and Mathematics Meet /

How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the difference between success and failure. How Round Is Your Circle? invites readers to explore many of the s...

Descripción completa

Detalles Bibliográficos
Autor principal: Bryant, John, 1934-
Otros Autores: Sangwin, C. J. (Christopher J.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Woodstock : Princeton University Press, 2011.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30376
003 MdBmJHUP
005 20230905043219.0
006 m o d
007 cr||||||||nn|n
008 110912r20112008nju o 00 0 eng d
020 |a 9781400837953 
020 |z 9780691149929 
020 |z 9780691131184 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Bryant, John,  |d 1934- 
245 1 0 |a How Round Is Your Circle? :   |b Where Engineering and Mathematics Meet /   |c John Bryant and Chris Sangwin. 
264 1 |a Woodstock :  |b Princeton University Press,  |c 2011. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2011. 
300 |a 1 online resource:   |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title; Copyright; Contents; Preface; Acknowledgements; Chapter 1 Hard Lines; 1.1 Cutting Lines; 1.2 The Pythagorean Theorem; 1.3 Broad Lines; 1.4 Cutting Lines; 1.5 Trial by Trials; Chapter 2 How to Draw a Straight Line; 2.1 Approximate-Straight-Line Linkages; 2.2 Exact-Straight-Line Linkages; 2.3 Hart's Exact-Straight-Line Mechanism; 2.4 Guide Linkages; 2.5 Other Ways to Draw a Straight Line; Chapter 3 Four-Bar Variations; 3.1 Making Linkages; 3.2 The Pantograph; 3.3 The Crossed Parallelogram; 3.4 Four-Bar Linkages; 3.5 The Triple Generation Theorem; 3.6 How to Draw a Big Circle 
505 0 |a 3.7 Chebyshev's Paradoxical MechanismChapter 4 Building the World's First Ruler; 4.1 Standards of Length; 4.2 Dividing the Unit by Geometry; 4.3 Building the World's First Ruler; 4.4 Ruler Markings; 4.5 Reading Scales Accurately; 4.6 Similar Triangles and the Sector; Chapter 5 Dividing the Circle; 5.1 Units of Angular Measurement; 5.2 Constructing Base Angles via Polygons; 5.3 Constructing a Regular Pentagon; 5.4 Building the World's First Protractor; 5.5 Approximately Trisecting an Angle; 5.6 Trisecting an Angle by Other Means; 5.7 Trisection of an Arbitrary Angle; 5.8 Origami 
505 0 |a Chapter 6 Falling Apart6.1 Adding Up Sequences of Integers; 6.2 Duijvestijn's Dissection; Colour Plates; 6.3 Packing; 6.4 Plane Dissections; 6.5 Ripping Paper; 6.6 A Homely Dissection; 6.7 Something More Solid; Chapter 7 Follow My Leader; Chapter 8 In Pursuit of Coat-Hangers; 8.1 What Is Area?; 8.2 Practical Measurement of Areas; 8.3 Areas Swept Out by a Line; 8.4 The Linear Planimeter; 8.5 The Polar Planimeter of Amsler; 8.6 The Hatchet Planimeter of Prytz; 8.7 The Return of the Bent Coat-Hanger; 8.8 Other Mathematical Integrators; Chapter 9 All Approximations Are Rational 
505 0 |a 9.1 Laying Pipes under a Tiled Floor9.2 Cogs and Millwrights; 9.3 Cutting a Metric Screw; 9.4 The Binary Calendar; 9.5 The Harmonograph; 9.6 A Little Nonsense!; Chapter 10 How Round Is Your Circle?; 10.1 Families of Shapes of Constant Width; 10.2 Other Shapes of Constant Width; 10.3 Three-Dimensional Shapes of Constant Width; 10.4 Applications; 10.5 Making Shapes of Constant Width; 10.6 Roundness; 10.7 The British Standard Summit Tests of BS3730; 10.8 Three-Point Tests; 10.9 Shapes via an Envelope of Lines; 10.10 Rotors of Triangles with Rational Angles; 10.11 Examples of Rotors of Triangles 
505 0 |a 10.12 Modern and Accurate Roundness MethodsChapter 11 Plenty of Slide Rule; 11.1 The Logarithmic Slide Rule; 11.2 The Invention of Slide Rules; 11.3 Other Calculations and Scales; 11.4 Circular and Cylindrical Slide Rules; 11.5 Slide Rules for Special Purposes; 11.6 The Magnameta Oil Tonnage Calculator; 11.7 Non-Logarithmic Slide Rules; 11.8 Nomograms; 11.9 Oughtred and Delamain's Views on Education; Chapter 12 All a Matter of Balance; 12.1 Stacking Up; 12.2 The Divergence of the Harmonic Series; 12.3 Building the Stack of Dominos; 12.4 The Leaning Pencil and Reaching the Stars 
520 |a How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the difference between success and failure. How Round Is Your Circle? invites readers to explore many of the same fundamental questions that working engineers deal with every day--it's challenging, hands-on, and fun. John Bryant and Chris Sangwin illustrate how physical models are created from abstract mathematical ones. Using elementary geometry and trigonometry, they guide readers through paper-and-pencil. 
588 |a Description based on print version record. 
650 7 |a Geometry, Plane.  |2 fast  |0 (OCoLC)fst00940930 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Geometrical models.  |2 fast  |0 (OCoLC)fst00940848 
650 7 |a Engineering mathematics.  |2 fast  |0 (OCoLC)fst00910601 
650 7 |a Circle.  |2 fast  |0 (OCoLC)fst00861586 
650 7 |a Geometry, Modern  |x Plane.  |2 fast  |0 (OCoLC)fst00940926 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Measurement.  |2 bisacsh 
650 7 |a circumference.  |2 aat 
650 6 |a Cercle. 
650 6 |a Modeles geometriques. 
650 6 |a Geometrie algebrique. 
650 6 |a Geometrie plane. 
650 6 |a Mathematiques de l'ingenieur. 
650 0 |a Geometry, Modern  |x Plane. 
650 0 |a Circle. 
650 0 |a Geometrical models. 
650 0 |a Geometry, Algebraic. 
650 0 |a Geometry, Plane. 
650 0 |a Engineering mathematics. 
655 7 |a Electronic books.   |2 local 
700 1 |a Sangwin, C. J.  |q (Christopher J.) 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30376/ 
945 |a Project MUSE - Custom Collection