Cargando…

Szegő's Theorem and Its Descendants : Spectral Theory for L<sup>2</sup> Perturbations of Orthogonal Polynomials /

This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background th...

Descripción completa

Detalles Bibliográficos
Autor principal: Simon, Barry, 1946-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2011.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30354
003 MdBmJHUP
005 20230905043217.0
006 m o d
007 cr||||||||nn|n
008 101103s2011 nju o 00 0 eng d
020 |a 9781400837052 
020 |z 9780691147048 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Simon, Barry,  |d 1946- 
245 1 0 |a Szegő's Theorem and Its Descendants :   |b Spectral Theory for L<sup>2</sup> Perturbations of Orthogonal Polynomials /   |c Barry Simon. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2011. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2011. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index. 
520 |a This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia. 
588 |a Description based on print version record. 
650 7 |a Spectral theory (Mathematics)  |2 fast  |0 (OCoLC)fst01129072 
650 7 |a Orthogonal polynomials.  |2 fast  |0 (OCoLC)fst01048521 
650 7 |a SCIENCE  |x Physics  |x Mathematical & Computational.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 6 |a Polynômes orthogonaux. 
650 6 |a Spectre (Mathematiques) 
650 0 |a Orthogonal polynomials. 
650 0 |a Spectral theory (Mathematics) 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30354/ 
945 |a Project MUSE - Custom Collection