Cargando…

Dr. Euler's Fabulous Formula : Cures Many Mathematical Ills /

Presents the story of the formula - zero equals e[pi] i+1 long regarded as the gold standard for mathematical beauty. This book shows why it still lies at the heart of complex number theory. It discusses many sophisticated applications of complex numbers in pure and applied mathematics, and to elect...

Descripción completa

Detalles Bibliográficos
Autor principal: Nahin, Paul J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2011.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30318
003 MdBmJHUP
005 20230905043215.0
006 m o d
007 cr||||||||nn|n
008 110428s2011 nju o 00 0 eng d
020 |a 9781400838479 
020 |z 9780691150376 
020 |z 9780691175911 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Nahin, Paul J. 
245 1 0 |a Dr. Euler's Fabulous Formula :   |b Cures Many Mathematical Ills /   |c Paul J. Nahin ; with a new preface by the author. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2011. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2011. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 0 |t Preface : "when did math become sexy?" --  |g 1.  |t Complex numbers (an assortment of essays beyond the elementary involving complex numbers) --  |g 2.  |t Vector trips (some complex plane problems in which direction matters) --  |g 3.  |t The irrationality of [pi]² ("higher" math at the sophomore level) --  |g 4.  |t Fourier series (named after Fourier but Euler was there first -- but he was, alas, partially wrong!) --  |g 5.  |t Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) --  |g 6.  |t Electronics and [square root of -1] (technological applications of complex numbers that Euler, who was a practical fellow himself, would have loved) --  |t Euler : the man and the mathematical physicist. 
520 |a Presents the story of the formula - zero equals e[pi] i+1 long regarded as the gold standard for mathematical beauty. This book shows why it still lies at the heart of complex number theory. It discusses many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. 
588 |a Description based on print version record. 
650 7 |a Numbers, Complex.  |2 fast  |0 (OCoLC)fst01041230 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Euler's numbers.  |2 fast  |0 (OCoLC)fst00916471 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 6 |a Mathematiques  |x Histoire. 
650 6 |a Integrales euleriennes. 
650 6 |a Nombres complexes. 
650 0 |a Mathematics  |x History. 
650 0 |a Euler's numbers. 
650 0 |a Numbers, Complex. 
655 7 |a History.  |2 fast  |0 (OCoLC)fst01411628 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
880 0 |6 505-00/(S  |a Preface to the paperback edition -- What this book is about, what you need to know to read it, and why you should read it -- Preface: When did math become sexy? -- Introduction: Concept of mathematical beauty. Equations, identities, and theorems. Mathematical ugliness. Beauty redux -- Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- Vector trips (some complex plane problems in which direction matters) -- The irrationality of π ("higher" math at the sophomore level) -- Fourier series (named after Fourier but Euler was there first, but he was, alas, partially wrong!) -- Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- Electronics and √ −1 (technological applications of complex numbers that Euler, who was a pratical fellow himself, would have loved) -- Euler: the man and the mathematical physicist. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30318/ 
945 |a Project MUSE - Custom Collection