Cargando…

Higher Topos Theory (AM-170) /

Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of th...

Descripción completa

Detalles Bibliográficos
Autor principal: Lurie, Jacob, 1977-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2009.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30221
003 MdBmJHUP
005 20230905043209.0
006 m o d
007 cr||||||||nn|n
008 100727s2009 nju o 00 0 eng d
020 |a 9781400830558 
020 |z 9780691140483 
020 |z 9780691140490 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Lurie, Jacob,  |d 1977- 
245 1 0 |a Higher Topos Theory (AM-170) /   |c Jacob Lurie. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2009. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2009. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 170 
505 0 |a Cover; Contents; Preface; Chapter 1. An Overview of Higher Category Theory; Chapter 2. Fibrations of Simplicial Sets; Chapter 3. The 8-Category of 8-Categories; Chapter 4. Limits and Colimits; Chapter 5. Presentable and Accessible 8-Categories; Chapter 6. 8-Topoi; Chapter 7. Higher Topos Theory in Topology; Appendix; Bibliography; General Index; Index of Notation. 
520 |a Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's firs. 
546 |a English. 
588 |a Description based on print version record. 
650 7 |a Topos  |g Mathematik  |2 gnd 
650 7 |a Kategorientheorie  |2 gnd 
650 7 |a Toposes.  |2 fast  |0 (OCoLC)fst01152703 
650 7 |a Categories (Mathematics)  |2 fast  |0 (OCoLC)fst00849000 
650 7 |a MATHEMATICS  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 6 |a Categories (Mathematiques) 
650 6 |a Topos (Mathematiques) 
650 0 |a Categories (Mathematics) 
650 0 |a Toposes. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30221/ 
945 |a Project MUSE - Custom Collection