|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_30217 |
003 |
MdBmJHUP |
005 |
20230905043209.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
090202s2010 nju o 00 0 eng d |
010 |
|
|
|z 2009003729
|
020 |
|
|
|a 9781400831067
|
020 |
|
|
|z 9780691141855
|
020 |
|
|
|z 9780691141848
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Gorodnik, Alexander,
|d 1975-
|
245 |
1 |
4 |
|a The Ergodic Theory of Lattice Subgroups (AM-172) /
|c Alexander Gorodnik, Amos Nevo.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c 2010.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 0000
|
264 |
|
4 |
|c ©2010.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Annals of mathematics studies ;
|v no. 172
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index.
|
520 |
|
|
|a The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the.
|
546 |
|
|
|a In English.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
7 |
|a Lie groups.
|2 fast
|0 (OCoLC)fst00998135
|
650 |
|
7 |
|a Lattice theory.
|2 fast
|0 (OCoLC)fst00993426
|
650 |
|
7 |
|a Harmonic analysis.
|2 fast
|0 (OCoLC)fst00951490
|
650 |
|
7 |
|a Ergodic theory.
|2 fast
|0 (OCoLC)fst00914656
|
650 |
|
7 |
|a Dynamics.
|2 fast
|0 (OCoLC)fst00900295
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a kinetics (dynamics)
|2 aat
|
650 |
|
6 |
|a Dynamique.
|
650 |
|
6 |
|a Analyse harmonique.
|
650 |
|
6 |
|a Theorie des treillis.
|
650 |
|
6 |
|a Groupes de Lie.
|
650 |
|
6 |
|a Theorie ergodique.
|
650 |
|
0 |
|a Dynamics.
|
650 |
|
0 |
|a Harmonic analysis.
|
650 |
|
0 |
|a Lattice theory.
|
650 |
|
0 |
|a Lie groups.
|
650 |
|
0 |
|a Ergodic theory.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
700 |
1 |
|
|a Nevo, Amos,
|d 1966-
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/30217/
|
945 |
|
|
|a Project MUSE - Custom Collection
|