Cargando…

Nonplussed! : Mathematical Proof of Implausible Ideas /

Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true: Conclusions that, for exam...

Descripción completa

Detalles Bibliográficos
Autor principal: Havil, Julian, 1952-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2010.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30018
003 MdBmJHUP
005 20230905043157.0
006 m o d
007 cr||||||||nn|n
008 101025r20102007nju o 00 0 eng d
020 |a 9781400837380 
020 |z 9780691120560 
020 |z 9780691148229 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Havil, Julian,  |d 1952- 
245 1 0 |a Nonplussed! :   |b Mathematical Proof of Implausible Ideas /   |c Julian Havil. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2010. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2010. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title Page; Copyright Page; Table of Contents; Preface; Acknowledgements; Introduction; CHAPTER 1 Three Tennis Paradoxes; CHAPTER 2 The Uphill Roller; CHAPTER 3 The Birthday Paradox; CHAPTER 4 The spin of a Table; CHAPTER 5 Derangements; CHAPTER 6 Conway's Chequerboard Army; CHAPTER 7 The Toss of a Needle; CHAPTER 8 Torricell's Trumpet; CHAPTER 9 Nontransitive Effects; CHAPTER 10 A Pursuit Problem; CHAPTER 11 Parrondo's Games; CHAPTER 12 Hyperdimensions; CHAPTER 13 Friday the 13th; CHAPTER 14 Fractran; THE MOTIFS; APPENDIX A The Inclusion-Exclusion Principle. 
520 |a Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true: Conclusions that, for example, tell us that a losing sports team can become a winning one by adding worse players than its opponents. Or that the thirteenth of the month is more likely to be a Friday than any other day. Or that cones can roll unaided uphill. In Nonplussed!--a delightfully eclectic collection of paradoxes fro. 
546 |a English. 
588 |a Description based on print version record. 
650 7 |a Matematiska lekar.  |2 sao 
650 7 |a Matematik  |x populärvetenskap.  |2 sao 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Mathematical recreations.  |2 fast  |0 (OCoLC)fst01012120 
650 7 |a SCIENCE  |x Applied Sciences.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 6 |a Paradoxe  |x Mathematiques. 
650 6 |a Jeux mathematiques. 
650 6 |a Mathematiques  |v Miscellanees. 
650 0 |a Paradox  |x Mathematics. 
650 0 |a Mathematical recreations. 
650 0 |a Mathematics  |v Miscellanea. 
655 7 |a Trivia and miscellanea.  |2 fast  |0 (OCoLC)fst01921748 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30018/ 
945 |a Project MUSE - Custom Collection