Cargando…

Gamma : Exploring Euler's Constant /

Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the...

Descripción completa

Detalles Bibliográficos
Autor principal: Havil, Julian, 1952-
Otros Autores: Dyson, Freeman J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2009.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_29992
003 MdBmJHUP
005 20230905043155.0
006 m o d
007 cr||||||||nn|n
008 100428s2009 nju o 00 0 eng d
020 |a 9781400832538 
020 |z 9780691178103 
020 |z 9780691141336 
020 |z 9780691099835 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Havil, Julian,  |d 1952- 
245 1 0 |a Gamma :   |b Exploring Euler's Constant /   |c Julian Havil. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2009. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2009. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton Science Library 
505 0 |a Cover; Title; Copyright; Contents; Foreword; Acknowledgements; Introduction; CHAPTER ONE: The Logarithmic Cradle; CHAPTER TWO: The Harmonic Series; CHAPTER THREE: Sub-Harmonic Series; CHAPTER FOUR: Zeta Functions; CHAPTER FIVE: Gamma's Birthplace; CHAPTER SIX: The Gamma Function; CHAPTER SEVEN: Euler's Wonderful Identity; CHAPTER EIGHT: A Promise Fulfilled; CHAPTER NINE: What Is Gamma ... Exactly?; CHAPTER TEN: Gamma as a Decimal; CHAPTER ELEVEN: Gamma as a Fraction; CHAPTER TWELVE: Where Is Gamma?; CHAPTER THIRTEEN: It's a Harmonic World; CHAPTER FOURTEEN: It's a Logarithmic World. 
505 0 |a CHAPTER FIFTEEN: Problems with PrimesCHAPTER SIXTEEN: The Riemann Initiative; APPENDIX A: The Greek Alphabet; APPENDIX B: Big Oh Notation; APPENDIX C: Taylor Expansions; APPENDIX D: Complex Function Theory; APPENDIX E: Application to the Zeta Function; References; Name Index; Subject Index. 
520 |a Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the su. 
588 |a Description based on print version record. 
600 1 7 |a Euler, Leonhard,  |d 1707-1783.  |2 fast  |0 (OCoLC)fst00003005 
600 1 0 |a Euler, Leonhard,  |d 1707-1783. 
650 7 |a Mathematical constants.  |2 fast  |0 (OCoLC)fst01012076 
650 7 |a Gamma functions.  |2 fast  |0 (OCoLC)fst00937592 
650 7 |a MATHEMATICS  |x History & Philosophy.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Arithmetic.  |2 bisacsh 
650 6 |a Fonctions gamma. 
650 6 |a Constantes (Mathematiques) 
650 0 |a Gamma functions. 
650 0 |a Mathematical constants. 
655 7 |a Electronic books.   |2 local 
700 1 |a Dyson, Freeman J. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/29992/ 
945 |a Project MUSE - Custom Collection