Cargando…

Quadrangular Algebras. (MN-46) /

This book introduces a new class of non-associative algebras related to certain exceptional algebraic groups and their associated buildings. Richard Weiss develops a theory of these "quadrangular algebras" that opens the first purely algebraic approach to the exceptional Moufang quadrangle...

Descripción completa

Detalles Bibliográficos
Autor principal: Weiss, Richard M. (Richard Mark), 1946-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2006.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_29972
003 MdBmJHUP
005 20230905043154.0
006 m o d
007 cr||||||||nn|n
008 090529s2006 nju o 00 0 eng d
020 |a 9781400826940 
020 |z 9780691124605 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Weiss, Richard M.  |q (Richard Mark),  |d 1946- 
245 1 0 |a Quadrangular Algebras. (MN-46) /   |c Richard M. Weiss. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2006. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2006. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton paperbacks 
490 0 |a Mathematical notes ;  |v 46 
505 0 |a Contents; Preface; Chapter 1. Basic Definitions; Chapter 2. Quadratic Forms; Chapter 3. Quadrangular Algebras; Chapter 4. Proper Quadrangular Algebras; Chapter 5. Special Quadrangular Algebras; Chapter 6. Regular Quadrangular Algebras; Chapter 7. Defective Quadrangular Algebras; Chapter 8. Isotopes; Chapter 9. Improper Quadrangular Algebras; Chapter 10. Existence; Chapter 11. Moufang Quadrangles; Chapter 12. The Structure Group; Bibliography; Index. 
520 |a This book introduces a new class of non-associative algebras related to certain exceptional algebraic groups and their associated buildings. Richard Weiss develops a theory of these "quadrangular algebras" that opens the first purely algebraic approach to the exceptional Moufang quadrangles. These quadrangles include both those that arise as the spherical buildings associated to groups of type E6, E7, and E8 as well as the exotic quadrangles "of type F4" discovered earlier by Weiss. Based on their relationship to exceptional algebraic groups, quadrangular algebras belong in 
546 |a English. 
588 |a Description based on print version record. 
650 1 7 |a Algebraïsche structuren.  |2 gtt 
650 1 7 |a Kwadratische vormen.  |2 gtt 
650 7 |a Forms, Quadratic.  |2 fast  |0 (OCoLC)fst00932985 
650 7 |a Algebra.  |2 fast  |0 (OCoLC)fst00804885 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a algebra.  |2 aat 
650 6 |a Algebre. 
650 6 |a Formes quadratiques. 
650 0 |a Algebra. 
650 0 |a Forms, Quadratic. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/29972/ 
945 |a Project MUSE - Custom Collection