Cargando…

Radon Transforms and the Rigidity of the Grassmannians (AM-156) /

This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given...

Descripción completa

Detalles Bibliográficos
Autor principal: Gasqui, Jacques
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Woodstock : Princeton University Press, 2004.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_29940
003 MdBmJHUP
005 20230905043152.0
006 m o d
007 cr||||||||nn|n
008 090921s2004 nju o 00 0 eng d
020 |a 9781400826179 
020 |z 9780691118994 
020 |z 9780691118987 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Gasqui, Jacques. 
245 1 0 |a Radon Transforms and the Rigidity of the Grassmannians (AM-156) /   |c Jacques Gasqui and Hubert Goldschmidt. 
264 1 |a Woodstock :  |b Princeton University Press,  |c 2004. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2004. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 156 
505 0 0 |t Frontmatter --  |t TABLE OF CONTENTS --  |t INTRODUCTION --  |t Chapter I. Symmetric Spaces and Einstein Manifolds --  |t Chapter II. Radon Transforms on Symmetric Spaces --  |t Chapter III. Symmetric Spaces of Rank One --  |t Chapter IV. The Real Grassmannians --  |t Chapter V. The Complex Quadric --  |t Chapter VI. The Rigidity of the Complex Quadric --  |t Chapter VII. The Rigidity of the Real Grassmannians --  |t Chapter VIII. The Complex Grassmannians --  |t Chapter IX. The Rigidity of the Complex Grassmannians --  |t Chapter X. Products of Symmetric Spaces --  |t References --  |t Index. 
520 |a This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th. 
546 |a In English. 
588 |a Description based on print version record. 
600 1 0 |a Goldschmidt, Hubert,  |d 1942- 
650 7 |a Radon transforms.  |2 fast  |0 (OCoLC)fst01088442 
650 7 |a Rigidity (Geometry)  |2 fast  |0 (OCoLC)fst01097951 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 6 |a Rigidite (Geometrie) 
650 6 |a Transformations de Radon. 
650 0 |a Rigidity (Geometry) 
650 0 |a Radon transforms. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/29940/ 
945 |a Project MUSE - Custom Collection