Cargando…

Blow-up Theory for Elliptic PDEs in Riemannian Geometry (MN-45) /

Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrodinger operators on the left hand sid...

Descripción completa

Detalles Bibliográficos
Autor principal: Druet, Olivier, 1976-
Otros Autores: Robert, Frederic, 1974-, Hebey, Emmanuel, 1964-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2004.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_29828
003 MdBmJHUP
005 20230905043145.0
006 m o d
007 cr||||||||nn|n
008 090601s2004 nju o 00 0 eng d
020 |a 9781400826162 
020 |z 9780691119533 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Druet, Olivier,  |d 1976- 
245 1 0 |a Blow-up Theory for Elliptic PDEs in Riemannian Geometry (MN-45) /   |c Olivier Druet, Emmanuel Hebey, Frederic Robert. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2004. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2004. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Mathematical notes 
505 0 |a Preface; Chapter 1. Background Material; Chapter 2. The Model Equations; Chapter 3. Blow-up Theory in Sobolev Spaces; Chapter 4. Exhaustion and Weak Pointwise Estimates; Chapter 5. Asymptotics When the Energy Is of Minimal Type; Chapter 6. Asymptotics When the Energy Is Arbitrary; Appendix A. The Green's Function on Compact Manifolds; Appendix B. Coercivity Is a Necessary Condition; Bibliography 
520 |a Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrodinger operators on the left hand side and a critical nonlinearity on the right hand side. A significant development in the study of such equations occurred in the 1980s. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev s. 
546 |a In English. 
588 |a Description based on print version record. 
650 1 7 |a Differentiaalvergelijkingen.  |2 gtt 
650 1 7 |a Variatierekening.  |2 gtt 
650 1 7 |a Riemann-metriek.  |2 gtt 
650 7 |a Geometry, Riemannian.  |2 fast  |0 (OCoLC)fst00940940 
650 7 |a Differential equations, Nonlinear.  |2 fast  |0 (OCoLC)fst00893474 
650 7 |a Calculus of variations.  |2 fast  |0 (OCoLC)fst00844140 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 6 |a Geometrie de Riemann. 
650 6 |a Équations differentielles non lineaires. 
650 6 |a Calcul des variations. 
650 0 |a Geometry, Riemannian. 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Calculus of variations. 
655 7 |a Electronic books.   |2 local 
700 1 |a Robert, Frederic,  |d 1974- 
700 1 |a Hebey, Emmanuel,  |d 1964- 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/29828/ 
945 |a Project MUSE - Custom Collection