Cargando…

Twisted L-Functions and Monodromy. (AM-150), Volume 150 /

For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions w...

Descripción completa

Detalles Bibliográficos
Autor principal: Katz, Nicholas M., 1943-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2002.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_29750
003 MdBmJHUP
005 20230905043140.0
006 m o d
007 cr||||||||nn|n
008 101018s2002 nju o 00 0 eng d
020 |a 9781400824885 
020 |z 9780691091518 
020 |z 9780691091501 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Katz, Nicholas M.,  |d 1943- 
245 1 0 |a Twisted L-Functions and Monodromy. (AM-150), Volume 150 /   |c by Nicholas M. Katz. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2002. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2002. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 150 
505 0 |a Cover; Title Page; Copyright Page; Table of Contents; Introduction; Part I: Background Material; Appendix to Chapter 1: A Result of Zalesskii; Chapter 2: Lefschetz Pencils, Especially on Cur; Chapter 3: Induction; Chapter 4: Middle Convolution; Part II: Twist Sheaves, over an Algebraically Closed Field; Chapter 5: Twist Sheaves and Their Monodromy; Part III: Twist Sheaves, over a Finite Field; Chapter 6: Dependence on Parameters; Chapter 7: Diophantine Applications over a Finite Field; Chapter 8: Average Order of Zero in Twist Families. 
520 |a For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves?Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the f. 
546 |a English. 
588 |a Description based on print version record. 
650 1 7 |a Monodromie.  |2 gtt 
650 1 7 |a L-functies.  |2 gtt 
650 7 |a Monodromy groups.  |2 fast  |0 (OCoLC)fst01025575 
650 7 |a L-functions.  |2 fast  |0 (OCoLC)fst00989693 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 6 |a Groupes de monodromie. 
650 6 |a Fonctions L. 
650 0 |a Monodromy groups. 
650 0 |a L-functions. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/29750/ 
945 |a Project MUSE - Custom Collection