Cargando…

What Can Be Computed? : A Practical Guide to the Theory of Computation /

What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundam...

Descripción completa

Detalles Bibliográficos
Autor principal: MacCormick, John, 1972- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, [2018]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_109720
003 MdBmJHUP
005 20230905054409.0
006 m o d
007 cr||||||||nn|n
008 221215s2018 nju o 00 0 eng d
020 |a 9781400889846 
020 |z 9780691170664 
035 |a (OCoLC)1354949427 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a MacCormick, John,  |d 1972-  |e author. 
245 1 0 |a What Can Be Computed? :   |b A Practical Guide to the Theory of Computation /   |c John MacCormick. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c [2018] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 2023 
264 4 |c ©[2018] 
300 |a 1 online resource:   |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Overview -- 1. Introduction: what can and cannot be computed? -- Part I: computability theory -- 2. What is a computer program? -- 3. Some impossible python programs -- 4. What is a computational problem? -- 5. Turing machines: the simplest computers -- 6. Universal computer programs: programs that can do anything -- 7. Reductions: how to prove a problem is hard -- 8. Nondeterminism: magic or reality? -- 9. Finite automata: computing with limited resources -- Part II: computational complexity theory -- 10. Complexity theory: when efficiency does matter -- 11. Poly and expo: the two most fundamental complexity classes -- 12. PolyCheck and NPoly: hard problems that are easy to identify -- 13. Polynomial-time mapping reductions: proving x is as easy as proving y -- 14. NP-completeness: most hard problems are equally hard -- Part III: origins and applications -- 15. The original Turing machine -- 16. You can't prove everything that's true -- 17. Karp's 21 problems -- 18. Conclusion: what will be computed?. 
520 |a What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of--and to experiment with--a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. 
588 |a Description based on print version record. 
650 7 |a Computers and IT.  |2 ukslc 
650 7 |a Computer science  |x Philosophy.  |2 fast  |0 (OCoLC)fst00872466 
650 7 |a Computer science.  |2 fast  |0 (OCoLC)fst00872451 
650 7 |a COMPUTERS / Computer Science  |2 bisacsh 
650 7 |a MATHEMATICS  |x Study & Teaching.  |2 bisacsh 
650 6 |a Informatique  |0 (CaQQLa)201-0063036  |x Histoire.  |0 (CaQQLa)201-0378888 
650 6 |a Informatique  |0 (CaQQLa)201-0063036  |x Philosophie.  |0 (CaQQLa)201-0380041 
650 6 |a Informatique.  |0 (CaQQLa)201-0063036 
650 2 |a Electronic Data Processing  |0 (DNLM)D001330 
650 0 |a Computer science  |x History. 
650 0 |a Computer science  |x Philosophy. 
650 0 |a Computer science. 
655 7 |a History.  |2 fast  |0 (OCoLC)fst01411628 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/109720/ 
945 |a Project MUSE - Custom Collection 
945 |a Project MUSE - 2023 Annual Backfile - Unpurchased