Cargando…

Calculus (Third Edition) /

Since first publication in 1954, this text has been widely used in North American universities in introductory courses in science and engineering. It is a streamlined text, in which essential ideas are not buried in endless detail.

Detalles Bibliográficos
Autor principal: Jeffery, R. L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Toronto] : University of Toronto Press, 1960.
Edición:Third edition.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_107886
003 MdBmJHUP
005 20230905054229.0
006 m o d
007 cr||||||||nn|n
008 171011s1960 onc o 00 0 eng d
020 |a 9781487599973 
020 |z 9781487592059 
035 |a (OCoLC)1005849085 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Jeffery, R. L.,  |e author. 
245 1 0 |a Calculus (Third Edition) /   |c R.L. Jeffery. 
250 |a Third edition. 
264 1 |a Toronto] :  |b University of Toronto Press,  |c 1960. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 2023 
264 4 |c ©1960. 
300 |a 1 online resource (312 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Heritage 
505 0 |a Cover -- Contents -- PREFACE -- PREFACE TO THE THIRD EDITION -- INTRODUCTION -- 0.1 The real number system -- 0.2 Decimal representation of rational numbers -- 0.3 Decimals which are neither finite nor repeating -- 0.4 Definition of real numbers in terms of rational numbers -- 0.5 The number scale -- 0.6 The rational points are dense on 1 -- 0.7 Points on the number scale not marked with rational points -- 0.8 Real numbers and their properties -- 0.9 Assumptions and working rules -- 0.10 Functions and functional relations -- 0.11 The double use of symbols 
505 0 |a 0.12 The Greek alphabetI: SPEED AND LIMITS -- 1.1 The idea of speed -- 1.2 Speed at a point -- 1.3 The idea of limit -- 1.4 Properties of limits -- 1.5 Improvements in notation -- II: THE DERIVATIVE OF A FUNCTION -- 2.1 The derivative of a function -- 2.2 The derivative as the slope of the tangent line to a curve -- 2.3 The four step rule -- 2.4 The limit of a ratio when both numerator and denominator tend to zero -- III: RULES AND FORMULAS FOR DIFFERENTIATION -- 3.1 Rules for differentiation -- 3.2 Formulas for differentiation 
505 0 |a 3.3 Proofs of formulas for differentiation3.4 The derivative of the square root of a function -- 3.5 The derivatives of functions which are defined implicitly -- IV: DIFFERENTIALS, DIFFERENTIAL EQUATIONS AND ANTI-DIFFERENTIALS -- 4.1 Definition and geometrical interpretation of a differential -- 4.2 Relations between dy and Î#x94;y -- 4.3 Functions with vanishing derivatives -- 4.4 The fundamental theorem of the differential calculus -- 4.5 Two theorems on differentials -- 4.6 Some further applications of differentials -- 4.7 Differential relations 
505 0 |a 4.8 Rules for determining differentials4.9 Anti-differentials -- 4.10 Formulas for anti-differentials -- V: THE DEFINITE INTEGRAL -- 5.1 The definite integral -- 5.2 Continuous function -- 5.3 Definition of continuity -- 5.4 Maximum and minimum values of a function -- 5.5 Assumptions regarding the behaviour of continuous functions -- 5.6 Sequences of numbers -- 5.7 Notations for sums -- 5.8 Areas and volumes -- 5.9 A problem on area -- 5.10 The definition of the definite integral -- 5.11 The fundamental theorem of the integral calculus 
505 0 |a 5.12 The solution of the area problem of  5.9 5.13 The symbol for the definite integral -- 5.14 The double use of symbols -- 5.15 The existence of the definite integral -- 5.16 The definite integral of continuous functions -- 5.17 Abbreviated methods -- 5.18 Area as a function of the variable x and the double meaning of the symbol dA -- 5.19 The existence of the definite integral of a continuous function -- 5.20 The indefinite integral -- 5.21 The fundamental theorem of the integral calculus -- VI: THE TRANSCENDENTAL FUNCTIONS -- 6.1 Transcendental functions 
520 |a Since first publication in 1954, this text has been widely used in North American universities in introductory courses in science and engineering. It is a streamlined text, in which essential ideas are not buried in endless detail. 
588 |a Description based on print version record. 
650 7 |a Calculus.  |2 fast  |0 (OCoLC)fst00844119 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a calculus.  |2 aat 
650 6 |a Calcul infinitesimal. 
650 0 |a Calculus. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/107886/ 
945 |a Project MUSE - Custom Collection