Cargando…

Comprehensive computational chemistry /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Yanez, Manuel, Boyd, Russell J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2024.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • E9780128219782v1_WEB
  • Cover
  • COMPREHENSIVE COMPUTATIONAL CHEMISTRY
  • CONTENTS OF VOLUME 1
  • LIST OF CONTRIBUTORS FOR VOLUME 1
  • Editor Biographies
  • Preface
  • Acknowledgements
  • Dedication
  • Introduction to "Advanced Electronic Structure Methods in Computational Quantum Chemistry"
  • 1 Introduction
  • 2 Chapters and Contents
  • 3 Summary
  • Modern Basis Sets Across the Periodic Table
  • Key Points
  • 1 Introduction
  • 2 Background
  • 3 Common Families of Basis Sets
  • 3.1 Atomic Natural Orbital Basis Sets
  • 3.2 Correlation Consistent Basis Sets
  • 3.3 Karlsruhe Basis Sets
  • 3.4 Polarization Consistent Basis Sets
  • 3.5 nZaP Basis Sets
  • 3.6 Sapporo Basis Sets
  • 3.7 Dyall Correlation Consistent Basis Sets
  • 4 Modern Basis Sets Across the Periodic Table
  • 4.1 H, He and the First two Main Group Rows
  • 4.2 Alkali and Alkaline Earth Elements
  • 4.3 d-Block Elements
  • 4.4 Post-d Main Group Elements
  • 4.5 f-Block Elements
  • 4.6 Superheavy Elements (6d, 7p)
  • 5 Summary
  • References
  • How Coupled-Cluster Theory is Solving the Electron Correlation Problem
  • Key Points
  • 1 Introduction
  • 2 Brief Sketch of CC Theory
  • 3 Numerical Applications
  • 3.1 Ground States
  • 3.1.1 Tailoring T amplitudes
  • 3.1.2 Analytic gradients and Hessians
  • 3.1.3 Derivative and response theories for properties
  • 3.1.4 Molecular dipole static and dynamic polarizabilities and C6 coefficients
  • 3.1.5 NMR chemical shifts and indirect spin-spin coupling constants
  • 3.1.6 Electron spin (or paramagnetic)-resonance (ESR or EPR) spectra tensors
  • 3.1.7 Beyond Born-Oppenheimer approximation (anharmonic frequencies and vibrational effects on ground state properties)
  • 3.1.8 Composite Methods
  • 3.2 CC Excited States
  • 3.2.1 CC excited state methods
  • 3.2.2 IP-EOM-CC and EA-EOM-CC
  • 3.2.3 Other low scaling EOM-CC methods
  • 3.2.4 Analytical gradients of EOM-CC and applications
  • 3.2.5 Relativistic effects and Spin-orbit coupling constants
  • 4 Concluding Remarks
  • Acknowledgment
  • References
  • Benchmark Accuracy in Thermochemistry, Kinetics, and Noncovalent Interactions
  • Key Points
  • Glossary
  • 1 Introduction
  • 2 Accuracy in Quantum Chemical Calculations
  • 3 Overview of Composite Ab Initio Methods
  • 3.1 Computational Cost of Composite Ab Initio Methods
  • 3.2 Accuracy of Composite Ab Initio Methods
  • 4 Energy Components in High-Level Composite Ab Initio Methods
  • 4.1 Valence CCSD(T) Energy Components
  • 4.2 Post-CCSD(T) Energy Components
  • 4.3 Secondary Energy Corrections
  • 5 Putting it all Together for Thermochemistry, Kinetics, and Noncovalent Interactions
  • Acknowledgments
  • References
  • Modern Density Functionals Derived From First Principles
  • Key Points
  • 1 Introduction to Kohn-Sham Density Functional Theory
  • 2 Exact Constraints for the Exchange-Correlation Hole and Energy Functional
  • 3 Jacob's Ladder Hierarchy and Some Non-Empirical Functionals on it
  • 3.1 Rung 1: Local Spin Density Approximation