Cargando…

Inorganic chemistry in Germany /

Inorganic Chemistry in Germany, Volume 82 in the Advances in Inorganic Chemistry series, highlights advances in the field, with this new volume presenting chapters written by an international board of authors. Specific chapters focus on Cooperative effects in bimetallic and multimetallic complexes,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Meyer, Karsten (Editor ), Eldik, Rudi van (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Academic Press, 2023.
Colección:Advances in inorganic chemistry ; volume 82
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Series page
  • Title page
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Nitrides stepping up: Terminal nitrido complexes in nitrogen fixation and nitrogen atom transfer reactionsNitrides stepping up
  • 1 Introduction
  • 1.1 Terminal transition metal nitrido ligands: Chemical bonding
  • 1.2 Terminal transition metal nitrido ligands: Reactivity trends
  • 2 Reductive N2 splitting into molecular nitrides
  • 2.1 Group 6 (molybdenum, tungsten)
  • 2.2 Group 7 (rhenium)
  • 3 Nitride transfer
  • 3.1 Group 6 (tungsten)
  • 3.2 Group 7 (rhenium)
  • 3.3 Group 8 (ruthenium, osmium)
  • 3.4 Group 9 (rhodium, iridium)
  • 3.5 Group 10 (palladium, platinum)
  • 4 Conclusions
  • References
  • Chapter Two: Aminopyridinato ligand complexes-Precursors for nanocomposite catalysts, quintuple bonding and on-purpose olefin synthesisAminopyridinato ligand complexes
  • 1 The aminopyridinato (Ap) ligand for the cyclopentadienyl (Cp) ligand concept
  • 2 Precursors for nanocomposite catalysts
  • 3 Quintuple bonding
  • 4 On-purpose olefin syntheses
  • References
  • Chapter Three: Advancing metal-organic frameworks' materials chemistry
  • 1 Introduction
  • 2 Flexible MOFs
  • 3 Surface-mounted MOFs
  • 4 Non-linear optical effects of MOFs
  • 5 Metal loading to MOFs
  • 6 Thermal catalysis with MOFs
  • 7 Photocatalysis with MOFs
  • 8 Electrocatalysis with SURMOFs
  • 9 MOF-derived materials for energy
  • 10 MOF-based hybrids for environment and health
  • Acknowledgments
  • References
  • Chapter Four: Recent advances in low-valent silicon chemistry
  • 1 Introduction
  • 2 Bis(silylene)s for stabilizing low-valent main-group elements
  • 2.1 Low-valent group 14 complexes
  • 2.1.1 Pyridine-based bis(NHSi) supported Ge0 complexes
  • 2.1.2 Ortho-carborane-based bis(NHSi) supported silicon(0) and germanium(0) complexes.
  • 2.1.3 Xanthene-based bis(NHSi) supported silicon(0), germanium(0), tin(0), and lead(0) complexes
  • 2.2 Low-valent group 15 complexes
  • 2.2.1 Ortho-carborane-based bis(NHSi) supported low-valent N and P complexes
  • 2.2.2 Aniline-based bis(NHSi)-supported low-valent P complexes
  • 2.2.3 Xanthene-based bis(NHSi)-ligated low-valent P complexes
  • 3 Bis(silylene)s for cooperative small molecule activation
  • 3.1 Oxidation reactions with O2, N2O and CO2
  • 3.2 Activation of CO2 and CS2 with ligand participation
  • 3.3 CO activation and further functionalization with NH3
  • 3.4 Formation of diradicals for CO activation
  • 4 Mono- and bis(silylene) transition-metal complexes in homogeneous catalysis
  • 4.1 Group 7-Mn
  • 4.1.1 MnII complexes for the transfer semi-hydrogenation of alkynes
  • 4.1.2 Mn0 complexes for the selective hydroboration of N-heteroarenes
  • 4.2 Group 8-Fe
  • 4.2.1 Fe0 Complexes for the hydrosilylation or hydrogenation of ketones
  • 4.2.2 FeII complexes for the reduction of N2O and nitro compounds
  • 4.3 Group 9-Co, Rh, Ir
  • 4.3.1 CoI complexes for the [2 + 2 + 2] cycloaddition of phenylacetylene
  • 4.3.2 CoII complexes for the regioselective C-H borylation of arenes and heterocycles
  • 4.3.3 IrIII and RhIII complexes for the C-H borylation of arenes
  • 4.3.4 IrI and RhI complexes for the reduction of amides
  • 4.3.5 RhI complexes for the hydroformylation of styrene
  • 4.3.6 RhIII complexes for the alkylation of aryl pyridines
  • 4.4 Group 10-Ni, Pd
  • 4.4.1 NiII complexes for Sonagashira cross-coupling
  • 4.4.2 NiII and Ni0 complexes for the Buchwald-Hartwig amination of arenes
  • 4.4.3 Ni0 and NiII complexes for Negishi and Kumada cross-coupling
  • 4.4.4 Ni0 complexes for the hydrogenation of olefins
  • 5 Conclusion and outlook
  • Acknowledgment
  • References.
  • Chapter Five: CO2 capture, reduction, and utilization by silicon and aluminum compounds and their mechanistic waysCO2 capture, reduction, and utilization
  • 1 Introduction
  • 2 Silicon meets carbon dioxide
  • 2.1 Silylenes
  • 2.2 Bis-silylenes
  • 2.2.1 CO2 reactivity of Si?E silicon double bonds
  • 2.2.2 Silyliumylidenes
  • 2.3 Silylone
  • 3 Aluminum meets carbon dioxide
  • 3.1 Alanes
  • 3.2 Aluminum hydrides
  • 3.3 Aluminum Lewis pairs
  • 3.4 Dialumenes
  • 3.5 Anionic alumanyls
  • 3.6 Heterobimetallic aluminum compounds
  • 4 Conclusion
  • Acknowledgments
  • References
  • Chapter Six: Late transition metal-ligand multiple bonds: Covalency and reactivity
  • 1 Contents
  • 1.1 Introduction
  • 2 Electronic structure of complexes with metal-ligand multiple bonds
  • 3 Covalency and reactivity-General
  • 3.1 Complexes in high oxidation states
  • 3.2 Complexes in higher spin states
  • 3.3 Group 10 and 11 complexes
  • 3.4 Coordination of redox-innocent cations
  • 4 Concluding remarks
  • References
  • Chapter Seven: Bismuth-based Lewis acidityBismuth-based Lewis acidity
  • 1 Introduction
  • 2 Orbital interactions of bismuth-based Lewis acids
  • 3 Means of assessing Lewis acidity
  • 4 Hard vs soft Lewis acids
  • 5 The role of charge in Lewis acidity
  • 6 Tuning Lewis acidity by geometric constraints and steric bulk
  • 7 Solvent effects
  • 8 Number and accessibility of Lewis acidic sites
  • 9 Metal-only Lewis pairs
  • 10 Impact of Lewis acidity on reactivity
  • 11 Conclusions
  • References
  • Chapter Eight: Structural constraint effects on p-block elements: Recent advances
  • 1 Introduction
  • 2 Structural deformations classified according to symmetry species, Walsh diagrams, and correlations with molecular inversion
  • 2.1 Deformation of C3v structures
  • 2.2 Deformation of D3h structures
  • 2.3 Deformation of Td structures.
  • 3 Experimental advances in the C3v to C2v deformation (trigonal pyramidal to T-shape)
  • 4 Experimental advances in the D3h to C3v deformation (trigonal planar to pyramidal)
  • 5 Experimental advances in the Td to D4h deformation (tetrahedral to square planar)
  • 6 Experimental advances in the C2v to C4v deformation
  • References
  • Index
  • Backcover.