Artificial intelligence /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Documento de Gobierno Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2023.
|
Colección: | Handbook of statistics (Amsterdam, Netherlands) ;
v. 49. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Artificial Intelligence
- Copyright
- Contents
- Contributors
- Preface
- Part I: Foundations and methods
- Chapter 1: Object-oriented basis of artificial intelligence methodologies
- 1. OO in AI
- 1.1. The concept of object
- 1.2. Object member functions and mapping
- 1.3. Objects in mathematics
- 1.3.1. Object type and closure property
- 1.3.2. Objects and mathematical spaces
- 1.3.3. Objects in logic theory
- 1.4. ML-Vector objects
- 1.4.1. Nontrivial-Concept objects
- 1.4.2. Vectorization as the first step in ML formulation
- 1.4.3. Vector vs array
- 1.4.4. Tensor object
- 1.5. Objects in AI state space
- 1.5.1. State space
- 1.5.2. State space search
- 1.5.2.1. Object operator
- 1.5.2.2. Context object
- 1.5.2.3. NEXT function
- 1.5.2.4. Score operator
- 1.5.3. State space search in evolutionary algorithms
- 1.6. Derivative-type objects-Automatic differentiation
- 2. Business requirements to ML problem formulation
- 2.1. ML problem formulation (nonsequence types)
- 2.2. ML formulation for sequence types
- 2.3. Overloaded terminology
- 2.4. Vector representation of common types of data
- 2.4.1. Choice of the word-Tensor or vector?
- 2.4.2. Vector representation of image
- 2.4.3. Vector representation of univariate time series signal
- 2.4.4. Vector representation of multivariate time series signal
- 2.4.5. Special type of multivariate time series-Video data
- 2.4.6. Vector representation for object detection images
- 2.4.7. Vector representation of nonhomogeneous features
- 2.4.8. Vector representation of text
- 2.5. Interesting ML problem statements
- 3. ML tools and implementation
- 4. ML Performance monitoring
- 5. Scope and limitation of the ML formulation
- 5.1. Experimental set up for deductive reasoning data sets
- 5.1.1. Data sets for selection problems
- 5.1.2. Data sets for matching problems
- 5.1.3. Data sets for divisibility problems
- 5.1.4. Data sets for representation problems
- 5.1.5. Data set for sorting problem
- 5.1.6. Machine learning models used in the study
- 5.1.6.1. Deep neural network
- 5.1.6.2. Random forest
- 5.1.6.3. Recurrent neural network
- 5.1.7. Train and test data set partitions
- 5.2. Observation of ML performance on deductive reasoning data sets
- 5.3. Interesting inferences of ML on deductive reasoning problems
- 6. Is the human brain the same as an artificial neural network?
- 6.1. Theoretical limitation of a computer with bound on time
- 6.2. Explainability deficit in a purely data-driven ML formulation
- 7. Summary of the chapter
- 8. Review questions
- Acknowledgement
- References
- Chapter 2: Machine learning in physics and geometry
- 1. Introduction and summary
- 1.1. Mathematical data as pure data
- 1.2. The inevitability of AI in geometry and physics
- 2. Background physics and mathematics
- 2.1. Polytopes