|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
SCIDIR_on1397313365 |
003 |
OCoLC |
005 |
20231120010754.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
230917s2023 mau o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d N$T
|d OPELS
|d YDX
|d OCLCO
|d EBLCP
|d OCLCO
|d NLC
|
020 |
|
|
|a 9780443137648
|q electronic book
|
020 |
|
|
|a 0443137641
|q electronic book
|
020 |
|
|
|z 9780443137631
|
020 |
|
|
|z 0443137633
|
020 |
|
|
|z 9780660442488
|
035 |
|
|
|a (OCoLC)1397313365
|
043 |
|
|
|a n-cn---
|
050 |
|
4 |
|a Q335
|b .A78 2023
|
082 |
0 |
4 |
|a 006.3
|2 23/eng/20230926
|
084 |
|
|
|a coll14
|2 lacc
|
084 |
|
|
|a coll29
|2 lacc
|
084 |
|
|
|a cci1icc
|2 lacc
|
086 |
1 |
|
|a D97-1/00-040-2023E-PDF
|
245 |
0 |
0 |
|a Artificial intelligence /
|c edited by Steven G. Krantz, Arni S.R. Srinivasa Rao, C.R. Rao.
|
264 |
|
1 |
|a Cambridge, MA :
|b Academic Press,
|c 2023.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Handbook of statistics ;
|v 49
|
505 |
0 |
|
|a Intro -- Artificial Intelligence -- Copyright -- Contents -- Contributors -- Preface -- Part I: Foundations and methods -- Chapter 1: Object-oriented basis of artificial intelligence methodologies -- 1. OO in AI -- 1.1. The concept of object -- 1.2. Object member functions and mapping -- 1.3. Objects in mathematics -- 1.3.1. Object type and closure property -- 1.3.2. Objects and mathematical spaces -- 1.3.3. Objects in logic theory -- 1.4. ML-Vector objects -- 1.4.1. Nontrivial-Concept objects -- 1.4.2. Vectorization as the first step in ML formulation -- 1.4.3. Vector vs array
|
505 |
8 |
|
|a 1.4.4. Tensor object -- 1.5. Objects in AI state space -- 1.5.1. State space -- 1.5.2. State space search -- 1.5.2.1. Object operator -- 1.5.2.2. Context object -- 1.5.2.3. NEXT function -- 1.5.2.4. Score operator -- 1.5.3. State space search in evolutionary algorithms -- 1.6. Derivative-type objects-Automatic differentiation -- 2. Business requirements to ML problem formulation -- 2.1. ML problem formulation (nonsequence types) -- 2.2. ML formulation for sequence types -- 2.3. Overloaded terminology -- 2.4. Vector representation of common types of data
|
505 |
8 |
|
|a 2.4.1. Choice of the word-Tensor or vector? -- 2.4.2. Vector representation of image -- 2.4.3. Vector representation of univariate time series signal -- 2.4.4. Vector representation of multivariate time series signal -- 2.4.5. Special type of multivariate time series-Video data -- 2.4.6. Vector representation for object detection images -- 2.4.7. Vector representation of nonhomogeneous features -- 2.4.8. Vector representation of text -- 2.5. Interesting ML problem statements -- 3. ML tools and implementation -- 4. ML Performance monitoring -- 5. Scope and limitation of the ML formulation
|
505 |
8 |
|
|a 5.1. Experimental set up for deductive reasoning data sets -- 5.1.1. Data sets for selection problems -- 5.1.2. Data sets for matching problems -- 5.1.3. Data sets for divisibility problems -- 5.1.4. Data sets for representation problems -- 5.1.5. Data set for sorting problem -- 5.1.6. Machine learning models used in the study -- 5.1.6.1. Deep neural network -- 5.1.6.2. Random forest -- 5.1.6.3. Recurrent neural network -- 5.1.7. Train and test data set partitions -- 5.2. Observation of ML performance on deductive reasoning data sets
|
505 |
8 |
|
|a 5.3. Interesting inferences of ML on deductive reasoning problems -- 6. Is the human brain the same as an artificial neural network? -- 6.1. Theoretical limitation of a computer with bound on time -- 6.2. Explainability deficit in a purely data-driven ML formulation -- 7. Summary of the chapter -- 8. Review questions -- Acknowledgement -- References -- Chapter 2: Machine learning in physics and geometry -- 1. Introduction and summary -- 1.1. Mathematical data as pure data -- 1.2. The inevitability of AI in geometry and physics -- 2. Background physics and mathematics -- 2.1. Polytopes
|
506 |
0 |
|
|a Unrestricted online access.
|f Unrestricted online access.
|2 star
|5 CaOONL
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
6 |
|a Intelligence artificielle.
|0 (CaQQLa)201-0008626
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|0 (CStmoGRI)aat300251574
|
655 |
|
0 |
|a Electronic books.
|
700 |
1 |
|
|a Krantz, Steven G.
|
700 |
1 |
|
|a Rao, Arni S. R. Srinivasa.
|
700 |
1 |
|
|a Rao, C. R.
|
776 |
0 |
8 |
|i Print version:
|z 9780443137648
|
776 |
0 |
8 |
|i Print version:
|z 0443137633
|z 9780443137631
|w (OCoLC)1374095297
|
830 |
|
0 |
|a Handbook of statistics (Amsterdam, Netherlands) ;
|v v. 49.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/handbooks/01697161/49
|z Texto completo
|