Cargando…

Artificial intelligence /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Krantz, Steven G., Rao, Arni S. R. Srinivasa, Rao, C. R.
Formato: Documento de Gobierno Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2023.
Colección:Handbook of statistics (Amsterdam, Netherlands) ; v. 49.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007i 4500
001 SCIDIR_on1397313365
003 OCoLC
005 20231120010754.0
006 m o d
007 cr cnu---unuuu
008 230917s2023 mau o 000 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d N$T  |d OPELS  |d YDX  |d OCLCO  |d EBLCP  |d OCLCO  |d NLC 
020 |a 9780443137648  |q electronic book 
020 |a 0443137641  |q electronic book 
020 |z 9780443137631 
020 |z 0443137633 
020 |z 9780660442488 
035 |a (OCoLC)1397313365 
043 |a n-cn--- 
050 4 |a Q335  |b .A78 2023 
082 0 4 |a 006.3  |2 23/eng/20230926 
084 |a coll14  |2 lacc 
084 |a coll29  |2 lacc 
084 |a cci1icc  |2 lacc 
086 1 |a D97-1/00-040-2023E-PDF 
245 0 0 |a Artificial intelligence /  |c edited by Steven G. Krantz, Arni S.R. Srinivasa Rao, C.R. Rao. 
264 1 |a Cambridge, MA :  |b Academic Press,  |c 2023. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Handbook of statistics ;  |v 49 
505 0 |a Intro -- Artificial Intelligence -- Copyright -- Contents -- Contributors -- Preface -- Part I: Foundations and methods -- Chapter 1: Object-oriented basis of artificial intelligence methodologies -- 1. OO in AI -- 1.1. The concept of object -- 1.2. Object member functions and mapping -- 1.3. Objects in mathematics -- 1.3.1. Object type and closure property -- 1.3.2. Objects and mathematical spaces -- 1.3.3. Objects in logic theory -- 1.4. ML-Vector objects -- 1.4.1. Nontrivial-Concept objects -- 1.4.2. Vectorization as the first step in ML formulation -- 1.4.3. Vector vs array 
505 8 |a 1.4.4. Tensor object -- 1.5. Objects in AI state space -- 1.5.1. State space -- 1.5.2. State space search -- 1.5.2.1. Object operator -- 1.5.2.2. Context object -- 1.5.2.3. NEXT function -- 1.5.2.4. Score operator -- 1.5.3. State space search in evolutionary algorithms -- 1.6. Derivative-type objects-Automatic differentiation -- 2. Business requirements to ML problem formulation -- 2.1. ML problem formulation (nonsequence types) -- 2.2. ML formulation for sequence types -- 2.3. Overloaded terminology -- 2.4. Vector representation of common types of data 
505 8 |a 2.4.1. Choice of the word-Tensor or vector? -- 2.4.2. Vector representation of image -- 2.4.3. Vector representation of univariate time series signal -- 2.4.4. Vector representation of multivariate time series signal -- 2.4.5. Special type of multivariate time series-Video data -- 2.4.6. Vector representation for object detection images -- 2.4.7. Vector representation of nonhomogeneous features -- 2.4.8. Vector representation of text -- 2.5. Interesting ML problem statements -- 3. ML tools and implementation -- 4. ML Performance monitoring -- 5. Scope and limitation of the ML formulation 
505 8 |a 5.1. Experimental set up for deductive reasoning data sets -- 5.1.1. Data sets for selection problems -- 5.1.2. Data sets for matching problems -- 5.1.3. Data sets for divisibility problems -- 5.1.4. Data sets for representation problems -- 5.1.5. Data set for sorting problem -- 5.1.6. Machine learning models used in the study -- 5.1.6.1. Deep neural network -- 5.1.6.2. Random forest -- 5.1.6.3. Recurrent neural network -- 5.1.7. Train and test data set partitions -- 5.2. Observation of ML performance on deductive reasoning data sets 
505 8 |a 5.3. Interesting inferences of ML on deductive reasoning problems -- 6. Is the human brain the same as an artificial neural network? -- 6.1. Theoretical limitation of a computer with bound on time -- 6.2. Explainability deficit in a purely data-driven ML formulation -- 7. Summary of the chapter -- 8. Review questions -- Acknowledgement -- References -- Chapter 2: Machine learning in physics and geometry -- 1. Introduction and summary -- 1.1. Mathematical data as pure data -- 1.2. The inevitability of AI in geometry and physics -- 2. Background physics and mathematics -- 2.1. Polytopes 
506 0 |a Unrestricted online access.  |f Unrestricted online access.  |2 star  |5 CaOONL 
650 0 |a Artificial intelligence. 
650 6 |a Intelligence artificielle.  |0 (CaQQLa)201-0008626 
650 7 |a artificial intelligence.  |2 aat  |0 (CStmoGRI)aat300251574 
655 0 |a Electronic books. 
700 1 |a Krantz, Steven G. 
700 1 |a Rao, Arni S. R. Srinivasa. 
700 1 |a Rao, C. R. 
776 0 8 |i Print version:  |z 9780443137648 
776 0 8 |i Print version:  |z 0443137633  |z 9780443137631  |w (OCoLC)1374095297 
830 0 |a Handbook of statistics (Amsterdam, Netherlands) ;  |v v. 49. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/01697161/49  |z Texto completo