Cargando…

Turquoise hydrogen : an effective pathway to decarbonization and value added carbon materials /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pelucchi, Matteo, Maestri, Matteo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2023.
Edición:First edition.
Colección:Advances in chemical engineering ; 61.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Turquoise Hydrogen
  • Copyright
  • Contents
  • Contributors
  • Chapter One: Catalytic and non-catalytic chemical kinetics of hydrocarbons cracking for hydrogen and carbon materials pro ...
  • 1. Introduction
  • 2. Mechanism of thermal pyrolysis of hydrocarbons
  • 2.1. Core mechanism-CH4 pyrolysis
  • 2.2. Reaction classes and reference kinetic parameters for hydrocarbon pyrolysis
  • 2.2.1. Chain initiation reactions
  • 2.2.2. Propagation
  • 2.2.3. Termination
  • 2.2.4. Molecular reactions
  • 2.2.5. Gas phase evolution and formation of the first aromatic ring
  • 2.3. PAHs and SOOT formation mechanism
  • 2.3.1. Monocyclic (MAHs) and polycyclic aromatic hydrocarbons (PAHs)
  • 2.3.2. Amorphous carbonaceous particles (soot)
  • 2.3.2.1. Discrete sectional method for soot modeling
  • 3. Catalytic pyrolysis of hydrocarbons
  • 3.1. Fouling
  • 3.2. CVD/CVI process for the formation of pyrolytic carbon materials
  • 3.2.1. Heterogeneous detailed kinetic models
  • 3.3. Synthesis of diamond
  • 3.3.1. Kinetic mechanism of diamond growth
  • 3.4. CNT synthesis and kinetic models
  • 3.4.1. Kinetic mechanism for CNTs growth
  • 4. Conclusions and outlook
  • References
  • Chapter Two: Fluid dynamics aspects and reactor scale simulations of chemical reactors for turquoise hydrogen production
  • 1. Introduction
  • 2. Modeling approaches
  • 2.1. Computational fluid dynamic approaches
  • 2.1.1. Single-phase flow
  • 2.1.2. Euler-Lagrange model: Fluid-particles flow
  • 2.1.3. Volume-of-fluid: Two-phase flow
  • 2.1.4. Euler-Euler model: Multi-phase flow
  • 2.1.5. Additional modeling tools
  • 2.1.5.1. Porous media model
  • 2.1.5.2. Turbulence models
  • 2.2. Macroscopic reactor models
  • 3. Models for non-catalytic methane pyrolysis
  • 3.1. Solar reactors
  • 3.2. Tubular flow reactors
  • 3.3. Stirred flow reactors
  • 3.4. Plasma reactors
  • 3.5. Molten metal reactors.
  • 4. Models for catalytic methane pyrolysis
  • 4.1. Chemical vapor deposition reactors
  • 4.2. Fluidized bed reactors
  • 4.3. Catalytic molten metal reactor
  • 5. Conclusions and perspectives
  • References
  • Chapter Three: Reactor processes for value added carbon synthesis and turquoise hydrogen
  • 1. Introduction
  • 1.1. Turquoise hydrogen and solid carbon
  • 1.1.1. Solid carbons
  • 1.1.1.1. Poorly graphitized, activated carbon, soot
  • 1.1.1.2. Value added carbons
  • 1.2. Carbon nanotubes formation and properties
  • 1.3. Synthesis techniques for bulk carbon nanotube materials
  • 1.4. Aims
  • 2. CVD reactor comparative metrics
  • 3. Substrate grown CVD CNT synthesis
  • 3.1. Substrate grown CNT synthesis
  • 3.2. Catalyst role and preparation
  • 3.3. Hydrocarbon composition
  • 3.4. CNT arrays for fibers
  • 3.5. Metrics
  • 3.5.1. Productivity
  • 3.5.2. Catalyst activity and consumption
  • 3.5.3. Feed dilution and energy intensity
  • 4. Fluidized bed CVD CNT synthesis
  • 4.1. Fluidized bed CNT synthesis
  • 4.2. Catalyst and catalyst support
  • 4.3. Fluidization dynamics and design of vessel
  • 4.4. Metrics
  • 4.4.1. Productivity
  • 4.4.2. Catalyst activity and consumption
  • 4.4.3. Feed dilution and energy intensity
  • 5. Floating catalyst CVD CNT synthesis
  • 5.1. Floating catalyst CNT synthesis
  • 5.2. Catalyst and promoter
  • 5.3. Carrier gas and gas flow
  • 5.4. Hydrocarbon sources and breakdown
  • 5.5. Metrics
  • 5.5.1. Productivity
  • 5.5.2. Catalyst activity and consumption
  • 5.5.3. Feed dilution and energy intensity
  • 6. Future outlook and discussion section
  • 7. Conclusion
  • References
  • Chapter Four: Properties, applications and industrialization of carbon nanotube materials from hydrocarbons cracking
  • 1. Carbon nanotubes as raw materials produced from hydrocarbons cracking: Structure, size and properties.
  • 2. Macroscopic materials of CNTs
  • 2.1. Fillers in nanocomposites
  • 2.1.1. Properties of nanocomposites
  • 2.1.1.1. Mechanical properties
  • 2.1.1.2. Electrical properties
  • 2.2. Nanocomposite electrodes
  • 2.3. CNT sheets
  • 2.3.1. Properties of CNT sheets
  • 2.3.1.1. Models for tensile properties
  • 2.3.1.2. Electrical properties
  • 2.3.2. Main applications of CNT sheets
  • 2.3.2.1. Veils for interlaminar reinforcement in structural composites
  • 2.3.2.2. Electrical conductors (EMI, heating elements, current collectors)
  • 2.4. Aligned fibers and fabrics
  • 2.4.1. Micromechanical model
  • 2.4.2. Electrical properties of CNT fibers
  • 2.4.3. Examples of applications with CNT fiber electrical cables
  • 3. Conclusions and outlook
  • References
  • Chapter Five: Plasma chemistry and plasma reactors for turquoise hydrogen and carbon nanomaterials production
  • 1. Introduction
  • 1.1. Non-thermal plasmas
  • 1.2. Thermal plasmas
  • 2. Thermal plasma technology overview
  • 2.1. Hot graphite electrodes DC and AC plasma technologies
  • 2.1.1. SINTEF-Kvaerner DC plasma technology
  • 2.1.2. Three-phase AC plasma technology
  • 2.2. The monolith process
  • 3. Gas and plasma kinetics
  • 3.1. Gas products
  • 3.2. Methane decomposition in the absence of plasma
  • 3.3. Methane decomposition in the presence of plasma
  • 3.4. Aromatic growth chemistry
  • 4. Particle formation
  • 4.1. Overview
  • 4.2. On the role of aromatics in particle morphology
  • 4.3. Inception
  • 4.4. Coagulation
  • 4.4.1. Large non-organic ions can play a role in particle formation
  • 4.5. The ``soot bell��
  • 5. Carbon black
  • 5.1. What is carbon black?
  • 5.2. Production of carbon black by plasma
  • 5.3. Mines Paristech-Monolith reactor
  • 5.4. Carbon product analysis
  • 5.5. Particle morphology
  • 6. Other carbon nanostructures
  • 6.1. Fullerenes and fullerene soot by thermal plasma.
  • 6.2. Single wall nanotubes
  • 6.3. Carbon fibers
  • 6.4. Carbon necklaces
  • 6.5. Cones, disks, and wisps
  • 6.6. Growth mechanisms
  • 7. Plasma and plasma process modeling
  • 7.1. Introduction to plasma pyrolysis CFD modeling
  • 7.2. Thermodynamic and transport properties
  • 7.3. Arc region
  • 7.4. Global gas phase chemistry
  • 7.5. Radiation and effect of carbon particles on radiation
  • 8. Future challenges and opportunities
  • References
  • Chapter Six: Advances in molten media technologies for methane pyrolysis
  • 1. Introduction
  • 2. Advances in methane pyrolysis in molten media
  • 3. Hydrodynamic parameters affecting the methane conversion in molten media
  • 3.1. Bubble diameter and bubble rising time
  • 3.2. Gas flow regimes in molten media
  • 3.3. Gas holdup
  • 4. Molten media for methane pyrolysis (metals, alloys and salts)
  • 4.1. Metals and alloys
  • 4.1.1. Metals without catalytic activity
  • 4.1.2. Metals with catalytic activity
  • 4.1.3. Alloys
  • 4.2. Salts
  • 5. Influence of molten media type on methane pyrolysis process
  • 6. Carbon formation and characterization in molten media
  • 7. Conclusions and perspectives
  • References
  • Further reading
  • Index.