Cargando…

Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hosseini, Seyed Ehsan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2023.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems
  • Copyright Page
  • Dedication
  • Contents
  • Preface
  • Acknowledgments
  • 1 Hydrogen, a green energy carrier
  • Abbreviation
  • 1.1 Global energy demand and environmental issues
  • 1.2 Hydrogen, a green energy carrier
  • 1.2.1 Hydrogen properties
  • 1.2.1.1 Hydrogen physical properties
  • 1.2.1.2 Hydrogen chemical properties
  • 1.2.2 Hydrogen safety
  • 1.2.2.1 Hydrogen explosion
  • 1.2.2.2 Safety in hydrogen production processes
  • 1.2.2.3 Safety in hydrogen storage
  • 1.2.2.4 Safety in hydrogen delivery
  • 1.2.3 Hydrogen and policy
  • 1.2.4 Hydrogen supply chain
  • 1.2.4.1 Feedstocks and production technologies
  • 1.2.4.2 Hydrogen fuel distribution
  • 1.3 Public acceptance of hydrogen as the fuel of the future
  • 1.4 Summary
  • 1.5 Review questions
  • References
  • 2 Hydrogen fuel production methods
  • 2.1 Introduction
  • 2.2 Hydrocarbon reforming
  • 2.2.1 Steam reforming
  • 2.2.2 Partial oxidation method
  • 2.2.3 Autothermal reforming method
  • 2.3 Hydrogen from hydrocarbon pyrolysis
  • 2.3.1 Catalyst development in CH4 thermocatalytic dissociation
  • 2.3.1.1 Metal-based catalyst
  • 2.3.1.1.1 Nonsupported metal catalysts
  • 2.3.1.1.2 Metal supported catalysts
  • 2.3.1.1.3 Metal oxide-supported catalysts
  • 2.3.1.1.4 Ceramic-based catalyst
  • 2.3.1.1.5 Thin layer catalysts
  • 2.3.1.1.6 Effects of various parameters on the catalyst stability and activity
  • 2.3.1.2 Carbon-based catalyst
  • 2.3.1.2.1 Carbon-based catalytic activity boosted by metal doping
  • 2.3.1.2.2 Effects of various parameters on the activity of the carbon-based catalysts
  • 2.3.1.2.3 Carbon-based catalytic deactivation
  • 2.3.1.3 Comparing metal and carbon-based catalysts
  • 2.3.1.4 Enhancing catalyst stability by cofeeding
  • 2.3.1.4.1 Ethylene as cofeed
  • 2.3.1.4.2 Alkanes as cofeed
  • 2.3.1.4.3 Ethanol as cofeed
  • 2.3.1.4.4 CO2 as cofeed
  • 2.3.1.4.5 H2S as cofeed
  • 2.3.1.4.6 Propylene as cofeed
  • 2.3.2 Catalyst regeneration
  • 2.3.3 Separation and purification
  • 2.4 Summary
  • References
  • 3 Hydrogen production methods based on the primary energy sources
  • Abbreviations
  • 3.1 Introduction
  • 3.2 Hydrogen colors
  • 3.3 Pink hydrogen (nuclear hydrogen)
  • 3.3.1 Nuclear hydrogen production via thermochemical cycles
  • 3.3.1.1 S-I cycle
  • 3.3.1.2 HyS cycle
  • 3.3.1.3 Cu-Cl cycle
  • 3.3.1.4 Mg-Cl cycle
  • 3.3.1.5 Ca-Br cycle
  • 3.3.1.6 Other cycles
  • 3.3.2 Economics, safety, and environmental aspects of nuclear hydrogen
  • 3.4 Biomass to hydrogen (green hydrogen)
  • 3.4.1 Thermochemical processes
  • 3.4.1.1 Biomass pyrolysis
  • 3.4.1.2 Biomass gasification
  • 3.4.2 Hydrogen production via biological processes
  • 3.4.2.1 Direct biophotolysis
  • 3.4.2.2 Indirect biophotolysis
  • 3.4.2.3 Biological WGSR
  • 3.4.2.4 Dark fermentation
  • 3.4.2.5 Photo-fermentation
  • 3.5 Coal to hydrogen (black/brown hydrogen)