Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2023.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems
- Copyright Page
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Hydrogen, a green energy carrier
- Abbreviation
- 1.1 Global energy demand and environmental issues
- 1.2 Hydrogen, a green energy carrier
- 1.2.1 Hydrogen properties
- 1.2.1.1 Hydrogen physical properties
- 1.2.1.2 Hydrogen chemical properties
- 1.2.2 Hydrogen safety
- 1.2.2.1 Hydrogen explosion
- 1.2.2.2 Safety in hydrogen production processes
- 1.2.2.3 Safety in hydrogen storage
- 1.2.2.4 Safety in hydrogen delivery
- 1.2.3 Hydrogen and policy
- 1.2.4 Hydrogen supply chain
- 1.2.4.1 Feedstocks and production technologies
- 1.2.4.2 Hydrogen fuel distribution
- 1.3 Public acceptance of hydrogen as the fuel of the future
- 1.4 Summary
- 1.5 Review questions
- References
- 2 Hydrogen fuel production methods
- 2.1 Introduction
- 2.2 Hydrocarbon reforming
- 2.2.1 Steam reforming
- 2.2.2 Partial oxidation method
- 2.2.3 Autothermal reforming method
- 2.3 Hydrogen from hydrocarbon pyrolysis
- 2.3.1 Catalyst development in CH4 thermocatalytic dissociation
- 2.3.1.1 Metal-based catalyst
- 2.3.1.1.1 Nonsupported metal catalysts
- 2.3.1.1.2 Metal supported catalysts
- 2.3.1.1.3 Metal oxide-supported catalysts
- 2.3.1.1.4 Ceramic-based catalyst
- 2.3.1.1.5 Thin layer catalysts
- 2.3.1.1.6 Effects of various parameters on the catalyst stability and activity
- 2.3.1.2 Carbon-based catalyst
- 2.3.1.2.1 Carbon-based catalytic activity boosted by metal doping
- 2.3.1.2.2 Effects of various parameters on the activity of the carbon-based catalysts
- 2.3.1.2.3 Carbon-based catalytic deactivation
- 2.3.1.3 Comparing metal and carbon-based catalysts
- 2.3.1.4 Enhancing catalyst stability by cofeeding
- 2.3.1.4.1 Ethylene as cofeed
- 2.3.1.4.2 Alkanes as cofeed
- 2.3.1.4.3 Ethanol as cofeed
- 2.3.1.4.4 CO2 as cofeed
- 2.3.1.4.5 H2S as cofeed
- 2.3.1.4.6 Propylene as cofeed
- 2.3.2 Catalyst regeneration
- 2.3.3 Separation and purification
- 2.4 Summary
- References
- 3 Hydrogen production methods based on the primary energy sources
- Abbreviations
- 3.1 Introduction
- 3.2 Hydrogen colors
- 3.3 Pink hydrogen (nuclear hydrogen)
- 3.3.1 Nuclear hydrogen production via thermochemical cycles
- 3.3.1.1 S-I cycle
- 3.3.1.2 HyS cycle
- 3.3.1.3 Cu-Cl cycle
- 3.3.1.4 Mg-Cl cycle
- 3.3.1.5 Ca-Br cycle
- 3.3.1.6 Other cycles
- 3.3.2 Economics, safety, and environmental aspects of nuclear hydrogen
- 3.4 Biomass to hydrogen (green hydrogen)
- 3.4.1 Thermochemical processes
- 3.4.1.1 Biomass pyrolysis
- 3.4.1.2 Biomass gasification
- 3.4.2 Hydrogen production via biological processes
- 3.4.2.1 Direct biophotolysis
- 3.4.2.2 Indirect biophotolysis
- 3.4.2.3 Biological WGSR
- 3.4.2.4 Dark fermentation
- 3.4.2.5 Photo-fermentation
- 3.5 Coal to hydrogen (black/brown hydrogen)