Integrated Photonics for Data Communication Applications.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2023.
|
Colección: | Integrated Photonics: Application-Specific Design and Manufacturing
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Integrated Photonics for Data Communication Applications
- Copyright Page
- Contents
- List of contributors
- About the editors
- Series foreword
- Guiding principles
- Introduction
- 1 Applications and key performance indicators for data communications
- 1.1 Introduction
- 1.2 Optical network case studies
- 1.2.1 High-performance computing
- 1.2.1.1 Workload requirements
- 1.2.1.2 Impact of emerging artificial intelligence workloads
- 1.2.1.3 High-performance computing link technologies
- 1.2.1.4 High-performance computing topologies
- 1.2.1.5 Considerations for schedulers
- 1.2.1.6 Historical trends in high-performance computing technology usage from the Top500
- 1.2.2 Enterprise data center
- 1.2.3 Hyperscale data centers-cloud computing
- 1.2.4 Hyperscale data centers-Web 2.0
- 1.2.4.1 Introduction
- 1.2.4.2 Network hardware
- 1.2.4.3 Fiber and optical interfaces
- 1.2.4.4 Workloads
- 1.2.4.5 Machine learning hardware
- 1.3 Optical module form factors
- 1.3.1 Transceiver module architecture
- 1.4 Interconnect figures of merit
- 1.5 Major inflection points and challenges
- 1.5.1 Power and thermal
- 1.5.2 Resource disaggregation
- 1.5.3 Interconnect cost targets
- 1.5.4 Reliability
- 1.6 Considerations for future technology
- References
- 2 Integrated lasers for data center silicon photonic-integrated circuits
- 2.1 Introduction
- 2.1.1 Types of sources needed for datacom
- 2.1.1.1 Multiwavelength lasers
- 2.1.1.1.1 Fabry-P�erot lasers
- 2.1.1.1.2 Ring lasers
- 2.1.1.2 Single frequency lasers
- 2.1.1.2.1 Distributed-feedback lasers
- 2.1.1.2.2 Distributed Bragg reflector lasers
- 2.1.1.3 Tunable lasers
- 2.1.1.3.1 Sampled-grating distributed Bragg reflector lasers
- 2.1.1.3.2 Vernier ring lasers
- 2.1.1.4 Comb lasers
- 2.1.1.4.1 Mode-locked lasers
- 2.1.1.4.2 Kerr comb lasers
- 2.1.2 Laser solutions
- 2.1.2.1 Disaggregated sources
- 2.1.2.2 Integrated sources
- 2.1.2.2.1 Hybrid integration
- 2.1.2.2.2 Heterogeneous integration
- 2.1.2.2.3 Monolithic integration
- 2.2 Integration issues
- 2.2.1 Process integration
- 2.2.2 Process temperatures
- 2.2.3 Yield
- 2.2.4 Reliability requirements
- 2.2.5 Cost
- 2.2.6 Coupling to Si waveguide
- 2.2.7 Optical stability and feedback tolerance
- 2.3 Performance requirements
- 2.3.1 Energy requirements
- 2.3.2 Threshold and slope efficiency
- 2.3.3 Output power
- 2.3.4 Spectral characteristics
- 2.3.5 Intensity noise
- 2.3.6 Operation temperature
- 2.4 State-of-the-art
- 2.4.1 Disaggregated
- 2.4.2 Integrated
- 2.4.2.1 Hybrid
- 2.4.2.2 Heterogeneous
- 2.4.2.3 Monolithic
- 2.5 Outlook
- 2.5.1 Next 5 years
- 2.5.2 Next 20 years
- References
- 3 Optical modulators
- 3.1 Introduction
- 3.2 Modulation mechanisms
- 3.2.1 The thermo-optic effect
- 3.2.2 The free-carrier plasma dispersion effect
- 3.2.3 Electro-absorption modulation
- 3.2.3.1 The Franz-Keldysh effect