Cargando…

Integrated Photonics for Data Communication Applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Glick, Madeleine, Liao, Ling, Schmidtke, Katharine
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2023.
Colección:Integrated Photonics: Application-Specific Design and Manufacturing
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Integrated Photonics for Data Communication Applications
  • Copyright Page
  • Contents
  • List of contributors
  • About the editors
  • Series foreword
  • Guiding principles
  • Introduction
  • 1 Applications and key performance indicators for data communications
  • 1.1 Introduction
  • 1.2 Optical network case studies
  • 1.2.1 High-performance computing
  • 1.2.1.1 Workload requirements
  • 1.2.1.2 Impact of emerging artificial intelligence workloads
  • 1.2.1.3 High-performance computing link technologies
  • 1.2.1.4 High-performance computing topologies
  • 1.2.1.5 Considerations for schedulers
  • 1.2.1.6 Historical trends in high-performance computing technology usage from the Top500
  • 1.2.2 Enterprise data center
  • 1.2.3 Hyperscale data centers-cloud computing
  • 1.2.4 Hyperscale data centers-Web 2.0
  • 1.2.4.1 Introduction
  • 1.2.4.2 Network hardware
  • 1.2.4.3 Fiber and optical interfaces
  • 1.2.4.4 Workloads
  • 1.2.4.5 Machine learning hardware
  • 1.3 Optical module form factors
  • 1.3.1 Transceiver module architecture
  • 1.4 Interconnect figures of merit
  • 1.5 Major inflection points and challenges
  • 1.5.1 Power and thermal
  • 1.5.2 Resource disaggregation
  • 1.5.3 Interconnect cost targets
  • 1.5.4 Reliability
  • 1.6 Considerations for future technology
  • References
  • 2 Integrated lasers for data center silicon photonic-integrated circuits
  • 2.1 Introduction
  • 2.1.1 Types of sources needed for datacom
  • 2.1.1.1 Multiwavelength lasers
  • 2.1.1.1.1 Fabry-P�erot lasers
  • 2.1.1.1.2 Ring lasers
  • 2.1.1.2 Single frequency lasers
  • 2.1.1.2.1 Distributed-feedback lasers
  • 2.1.1.2.2 Distributed Bragg reflector lasers
  • 2.1.1.3 Tunable lasers
  • 2.1.1.3.1 Sampled-grating distributed Bragg reflector lasers
  • 2.1.1.3.2 Vernier ring lasers
  • 2.1.1.4 Comb lasers
  • 2.1.1.4.1 Mode-locked lasers
  • 2.1.1.4.2 Kerr comb lasers
  • 2.1.2 Laser solutions
  • 2.1.2.1 Disaggregated sources
  • 2.1.2.2 Integrated sources
  • 2.1.2.2.1 Hybrid integration
  • 2.1.2.2.2 Heterogeneous integration
  • 2.1.2.2.3 Monolithic integration
  • 2.2 Integration issues
  • 2.2.1 Process integration
  • 2.2.2 Process temperatures
  • 2.2.3 Yield
  • 2.2.4 Reliability requirements
  • 2.2.5 Cost
  • 2.2.6 Coupling to Si waveguide
  • 2.2.7 Optical stability and feedback tolerance
  • 2.3 Performance requirements
  • 2.3.1 Energy requirements
  • 2.3.2 Threshold and slope efficiency
  • 2.3.3 Output power
  • 2.3.4 Spectral characteristics
  • 2.3.5 Intensity noise
  • 2.3.6 Operation temperature
  • 2.4 State-of-the-art
  • 2.4.1 Disaggregated
  • 2.4.2 Integrated
  • 2.4.2.1 Hybrid
  • 2.4.2.2 Heterogeneous
  • 2.4.2.3 Monolithic
  • 2.5 Outlook
  • 2.5.1 Next 5 years
  • 2.5.2 Next 20 years
  • References
  • 3 Optical modulators
  • 3.1 Introduction
  • 3.2 Modulation mechanisms
  • 3.2.1 The thermo-optic effect
  • 3.2.2 The free-carrier plasma dispersion effect
  • 3.2.3 Electro-absorption modulation
  • 3.2.3.1 The Franz-Keldysh effect