|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
SCIDIR_on1390677822 |
003 |
OCoLC |
005 |
20231120010747.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
230719s2023 ne ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d EBLCP
|d OPELS
|d OCLCQ
|d OCLCO
|d YDX
|d UKMGB
|d OCLCF
|d OCLCO
|
015 |
|
|
|a GBC393576
|2 bnb
|
016 |
7 |
|
|a 021054892
|2 Uk
|
019 |
|
|
|a 1390922773
|
020 |
|
|
|a 9780443161612
|q (electronic bk.)
|
020 |
|
|
|a 0443161615
|q (electronic bk.)
|
020 |
|
|
|z 9780443161605
|
020 |
|
|
|z 0443161607
|
035 |
|
|
|a (OCoLC)1390677822
|z (OCoLC)1390922773
|
050 |
|
4 |
|a TK2945.L58
|b S73 2023
|
082 |
0 |
4 |
|a 621.312424
|2 23/eng/20230801
|
245 |
0 |
0 |
|a State estimation strategies in lithium-ion battery management systems /
|c Shunli Wang [and five more].
|
264 |
|
1 |
|a Amsterdam, Netherlands ;
|a Cambridge, MA :
|b Elsevier,
|c [2023]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on September 25, 2023).
|
505 |
0 |
|
|a Front Cover -- State Estimation Strategies in Lithium-ion Battery Management Systems -- Copyright Page -- Contents -- Preface -- 1 Introduction -- 1.1 Research background -- 1.2 Research significance -- 1.3 Research status -- 1.3.1 Research status of energy state estimation -- 1.3.2 Research status of peak power estimation -- 1.3.3 Research status of state of charge estimation strategies -- 1.3.3.1 Open-circuit voltage method -- 1.3.3.2 The ampere integration method -- 1.3.3.3 The data-driven method -- 1.3.3.4 Model-based estimation methods
|
505 |
8 |
|
|a 1.3.4 Research status of state of health prediction algorithms -- 1.3.4.1 Capacity test method -- 1.3.4.2 Ohmic internal resistance test method -- 1.3.4.3 Health indicator assessment method -- 1.3.4.4 Adaptive algorithm -- 1.3.4.5 Data-driven algorithm -- References -- 2 Characteristic analysis of power lithium-ion batteries -- 2.1 Research background -- 2.1.1 Working principles analysis of lithium-ion batteries -- 2.1.2 Characteristic test of power lithium-ion batteries -- 2.1.3 Energy test experiment -- 2.1.4 Hybrid pulse power characterization test
|
505 |
8 |
|
|a 2.1.5 Battery capacity calibration experiments -- 2.1.6 Charge-discharge experiments at different current rates -- 2.1.7 Battery aging test experiment -- 2.2 Working characteristic analysis of lithium-ion batteries -- 2.2.1 Energy characteristic analysis -- 2.2.2 Internal resistance characteristic analysis -- 2.2.3 Open-circuit voltage characteristic analysis -- 2.2.4 Battery temperature characteristic analysis -- 2.3 Chapter summary -- References -- 3 Aging characteristics of lithium-ion batteries -- 3.1 Basic characteristics of lithium-ion batteries
|
505 |
8 |
|
|a 3.1.1 Performance index of mainstream lithium-ion batteries -- 3.1.2 Working principle of lithium-ion batteries -- 3.2 Analysis of state of charge affecting factors -- 3.2.1 Analysis of battery temperature characteristics -- 3.2.2 Experimental analysis of the charge-discharge ratio -- 3.2.3 Research status of energy state estimation -- 3.3 Battery aging characteristic analysis -- 3.3.1 Analysis of SOH affecting factors -- 3.3.2 State of charge-OCV law in the aging process -- 3.3.3 Analysis of battery aging internal resistance -- 3.4 Chapter summary -- References
|
505 |
8 |
|
|a 4 Lithium-ion battery hysteresis characteristics and modeling -- 4.1 Hysteresis characteristics of lithium-ion battery -- 4.1.1 Battery hysteresis -- 4.1.2 Secondary loop hysteresis characteristics -- 4.1.3 Hysteresis temperature dependence -- 4.1.4 Hysteretic path dependence -- 4.2 Lithium-ion battery open-circuit voltage-state of charge model -- 4.2.1 Equivalent circuit model with hysteresis -- 4.2.2 Model parameter identification -- 4.2.3 PI hysteresis model -- 4.3 Chapter summary -- References -- 5 Lithium-ion battery aging mechanism and multiple regression model -- 5.1 Research background
|
650 |
|
0 |
|a Lithium ion batteries.
|
650 |
|
0 |
|a Lithium ion batteries
|x Mathematical models.
|
650 |
|
6 |
|a Batteries au lithium-ion.
|0 (CaQQLa)000276316
|
650 |
|
6 |
|a Batteries au lithium-ion
|0 (CaQQLa)000276316
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
7 |
|a Lithium ion batteries
|2 fast
|0 (OCoLC)fst01764640
|
655 |
|
0 |
|a Electronic books.
|
700 |
1 |
|
|a Wang, Shunli,
|e author.
|
776 |
0 |
8 |
|i ebook version :
|z 9780443161612
|
776 |
0 |
8 |
|c Original
|z 0443161607
|z 9780443161605
|w (OCoLC)1365052355
|
776 |
0 |
8 |
|i Print version:
|t STATE ESTIMATION STRATEGIES IN LITHIUM-ION BATTERY MANAGEMENT SYSTEMS.
|d [S.l.] : ELSEVIER - HEALTH SCIENCE, 2023
|z 0443161607
|w (OCoLC)1365052355
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780443161605
|z Texto completo
|