Cargando…

Pancreatic cancer : basic mechanisms and therapies /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Emdad, Luni
Otros Autores: Atfi, Azeddine, Gogna, Rajan, Trevino, Jose G., Fisher, Paul B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology, 2023.
Colección:Advances in cancer research ; volume 159.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 SCIDIR_on1381717925
003 OCoLC
005 20231120010743.0
006 m o d
007 cr cnu||||||||
008 230603s2023 caua ob 000 0 eng d
040 |a SFB  |b eng  |e rda  |e pn  |c SFB  |d OPELS  |d OCLCO 
066 |c (S 
020 |z 9780443133541 
020 |z 0443133549 
035 |a (OCoLC)1381717925 
050 4 |a RC280.P25 
082 0 4 |a 616.99437 
100 1 |a Emdad, Luni. 
245 1 0 |a Pancreatic cancer :  |b basic mechanisms and therapies /  |c edited by Luni Emdad, Azeddine Atfi, Rajan Gogna, Jose G. Trevino, Paul B. Fisher. 
264 1 |a San Diego :  |b Elsevier Science & Technology,  |c 2023. 
264 4 |c �2023. 
300 |a 1 online resource (392 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in cancer research;  |v v. 159 
504 |a Includes bibliographical references. 
588 |a Description based on publisher supplied metadata and other sources. 
505 8 |a Chapter Three: In vivo models of pancreatic ductal adenocarcinoma -- 1. Introduction -- 2. Spontaneous tumor models -- 2.1. Chemical-induced models -- 2.1.1. N-nitrosobis (2-oxopropyl)amine (BOP) -- 2.1.2. Additional nitrosamines -- 2.1.3. Azaserine (O-diazoacetyl-l-serine) -- 2.1.4. 7,12-Dimethylbenz[a]anthracene (DMBA) -- 2.2. Genetically engineered mouse models (GEMM) -- 2.2.1. Conditional gene knockout -- 2.2.2. Cre-Lox recombination -- 2.2.3. KC/KIC model -- 2.2.4. KPC model -- 2.2.5. TGF/SMAD pathway models -- 2.2.6. Tet (tetracycline) expression systems -- 2.2.7. Tetracycline-induced PDAC models -- 2.2.8. CRISPR-based GEMMs -- 3. Implantation models -- 3.1. Subcutaneous implantation -- 3.2. Orthotopic implantation -- 3.3. Metastatic models -- 3.4. Patient-derived xenograft (PDX) protocols -- 3.5. Patient derived organoid xenograft (PDOX) models -- 3.6. Humanized PDX models -- 3.7. Syngeneic models -- 4. Conclusions -- Acknowledgments/Funding -- References -- Chapter Four: Interplay between MAP kinases and tumor microenvironment: Opportunity for immunotherapy in pancreatic cancer -- 1. Introduction -- 2. Current treatments and drug resistance in pancreatic cancer -- 3. Pancreatic cancer TME and drug resistance -- 4. Expression and function of ICPs in pancreatic cancer -- 5. MAP4KMAP3KMAP2KMAPK signaling module in pancreatic cancer -- 5.1. Expression and function of MAP4Ks in pancreatic cancer -- 5.2. Expression and function of MAP3Ks in pancreatic cancer -- 5.3. Expression and function of MAP2Ks in pancreatic cancer -- 5.4. Expression and function of MAPKs in pancreatic cancer -- 6. Targeting ICPs and MAPKs in pancreatic cancer -- 7. Summary -- Acknowledgments -- Author contributions -- Competing interests -- References -- Chapter Five: Targeting KRAS in pancreatic cancer: Emerging therapeutic strategies -- 1. Introduction. 
505 8 |a 2. Biochemistry of KRAS -- 3. KRAS signaling pathways -- 3.1. Receptor tyrosine kinase (RTK) pathway -- 3.2. RAF/MEK/ERK pathway -- 3.3. PI3K/AKT/mTOR pathway -- 3.4. Non-canonical pathways -- 4. KRAS mutations in PC -- 4.1. Metabolic effects -- 4.2. Tumor microenvironmental and immune modulatory effects -- 5. Emerging KRAS-targeted therapies -- 5.1. Direct KRAS inhibitors -- 5.2. Indirect KRAS inhibitors -- 5.3. PROTACs -- 6. KRAS-targeted combination strategies -- 6.1. KRAS inhibitor combinations with targeted therapy -- 6.2. KRAS inhibitor combinations with immunotherapy -- 6.3. KRAS inhibitor combinations with chemotherapy -- 7. KRAS and cellular senescence -- 7.1. Dual role of KRAS in senescence -- 7.2. Senescence-associated drug resistance and therapeutic vulnerabilities -- 8. Challenges for effectively targeting KRAS in PC -- 9. Future perspectives and conclusions -- Acknowledgments -- Conflict of interest -- References -- Chapter Six: Racial disparities in pancreatic cancer clinical trials: Defining the problem and identifying solutions -- 1. Introduction -- 2. Racial implicit bias as a barrier to enrollment -- 3. Access to trials and study design barriers -- 4. Impediments to clinical trial recruitment -- 4.1. Patient awareness -- 4.2. Community engagement to increase participation -- 5. Increasing pancreatic cancer trial diversity-A way forward -- References -- Chapter Seven: Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions -- 1. Introduction -- 2. PDAC tumoral heterogeneity -- 2.1. Inter-tumor heterogeneity in PDAC -- 2.2. Intratumoral heterogeneity in PDAC -- 2.3. The role of intratumoral heterogeneity in metastasis -- 3. PDAC adapts to grow in stress conditions -- 3.1. PDAC cells use metabolic reprogramming to meet their energy needs. 
650 0 |a Pancreas  |x Cancer. 
650 0 |a Drug resistance in cancer cells. 
650 0 |a Cellular signal transduction. 
650 2 |a Pancreatic Neoplasms  |0 (DNLM)D010190 
650 2 |a Survival Rate  |0 (DNLM)D015996 
650 2 |a Drug Resistance, Neoplasm  |0 (DNLM)D019008 
650 2 |a Tumor Microenvironment  |0 (DNLM)D059016 
650 2 |a Signal Transduction  |0 (DNLM)D015398 
650 6 |a Cellules canc�ereuses  |x R�esistance aux m�edicaments.  |0 (CaQQLa)201-0217335 
650 6 |a Transduction du signal cellulaire.  |0 (CaQQLa)201-0206812 
650 6 |a Pancr�eas  |x Cancer.  |0 (CaQQLa)201-0288909 
700 1 |a Atfi, Azeddine. 
700 1 |a Gogna, Rajan. 
700 1 |a Trevino, Jose G. 
700 1 |a Fisher, Paul B. 
830 0 |a Advances in cancer research ;  |v volume 159. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/0065230X/159  |z Texto completo 
880 8 |6 505-00/(S  |a 3.2. PDAC cells adapt to hypoxic environments -- 3.3. PDAC cells resist mechanical stress by degrading the ECM -- 3.4. Chronic inflammation promotes PDAC growth -- 3.5. Cellular interactions determine the fate of PDAC -- 4. PDAC therapeutic options -- 4.1. Surgery -- 4.2. Chemotherapy -- 4.3. Radiation -- 4.4. Immunotherapy -- 5. Tumor heterogeneity contributes to treatment resistance -- 5.1. Tumor cell heterogeneity -- 5.2. Tumor microenvironment heterogeneity -- 6. Conclusion -- Acknowledgments -- References -- Chapter Eight: Oncogenic signaling pathways in pancreatic ductal adenocarcinoma -- 1. Introduction -- 2. Oncogenic signaling pathways in PDAC -- 2.1. Wnt/β-catenin pathway -- 2.2. KRAS signaling pathway -- 2.3. TGF-β/SMAD signaling pathway -- 2.4. Notch signaling pathway -- 2.5. Sonic hedgehog (SHH) signaling pathway -- 2.6. JNK signaling pathway -- 3. MYC: Master regulator of PDAC aggressiveness -- 3.1. MYC as a reversible driver of PDAC progression -- 3.2. RAS and MYC: Partners in crime -- 3.3. MYC driven epigenetic reprogramming in PDAC -- 3.4. Role of MYC in PDAC metastasis and invasion -- 4. Elucidation of PDAC heterogeneity through single cell genomic approaches -- 5. Conclusions and future directions -- Acknowledgments -- References -- Chapter Nine: Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy -- 1. Introduction -- 2. PDAC treatment strategies and chemoresistance -- 3. Methods to predict PDAC chemoresistance -- 4. Role of EMT in PDAC chemoresistance -- 5. Role of non-coding RNAs in PDAC chemoresistance -- 5.1. Role of miRNAs in PDAC chemoresistance -- 5.2. Role of lncRNA in PDAC chemoresistance -- 6. Role of the microenvironment in PDAC chemoresistance -- 6.1. Role of the tumor microenvironment and stroma in PDAC chemoresistance. 
880 8 |6 505-00/(S  |a 6.2. Role of the immune microenvironment in PDAC chemoresistance -- 7. Role of nucleoside transporters in PDAC chemoresistance -- 8. Role of autophagy in PDAC chemoresistance -- 9. Role of metabolism in PDAC chemoresistance -- 10. Role of extracellular vesicles (EV) and exosomes in PDAC chemoresistance -- 11. Role of signaling pathways in PDAC chemoresistance -- 11.1.1. Epidermal growth factor (EGF) -- 11.1.2. Insulin-like growth factor (IGF) -- 11.1.3. Vascular endothelial growth factor (VEGF) -- 11.1.4. Transforming growth factor-beta (TGF-β) -- 11.1.5. Platelet-derived growth factor (PDGF) -- 11.1.6. Hepatocyte growth factor (HGF) -- 11.1.7. Fibroblast growth factor (FGF) -- 11.1.8. Nerve growth factor (NGF) -- 11.1.9. Connective tissue growth factor (CTGF/CCN2) -- 12. Role of pancreatic tumor microbiome in PDAC chemoresistance -- 13. Future directions: Methods to sensitize pancreatic cancer to therapy -- Acknowledgments -- Conflict of interest -- References -- Chapter Ten: Tumor microenvironment interactions with cancer stem cells in pancreatic ductal adenocarcinoma -- 1. Introduction -- 2. Clinical issues in pancreatic ductal adenocarcinoma -- 3. Cancer stem cells in pancreatic ductal adenocarcinoma -- 4. Tumor microenvironment in pancreatic cancer -- 5. Metastasis in pancreatic ductal adenocarcinoma -- 6. Conclusion -- Acknowledgments -- References. 
880 0 |6 505-00/(S  |a Intro -- Pancreatic Cancer: Basic Mechanisms and Therapies -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Notch signaling pathway in pancreatic tumorigenesis -- 1. Introduction -- 2. Roles of Notch signaling in pancreatic ductal adenocarcinoma (PDAC) -- 2.1. The cellular origin, initiation, and progression of PDAC -- 2.2. Roles of Notch in PDAC initiation -- 2.3. Roles of Notch in PDAC progression -- 2.4. Differential functions of Notch signaling pathway in PDAC -- 2.5. Roles of Notch modulators in PDAC pathogenesis -- 2.6. Notch signaling in the tumor microenvironment of PDAC -- 2.7. Crosstalk between the Notch and other signaling pathways in PDAC -- 2.7.1. Notch and MEK/ERK -- 2.7.2. Notch and TGF-β -- 2.7.3. Notch and NFκB -- 2.7.4. Notch and Sox9 -- 2.8. Aberrant Notch signaling in human PDAC -- 2.9. Roles of Notch signaling in PDAC resistance to therapeutics -- 2.10. Targeting Notch in PDAC -- 3. Roles of Notch signaling in pancreatic neuroendocrine tumor (PNET) -- 4. Perspective -- References -- Chapter Two: Deciphering epithelial-to-mesenchymal transition in pancreatic cancer -- 1. Significance -- 2. Introduction -- 3. Defining EMT and its molecular mechanisms and pathways -- 3.1. Characteristics of EMT -- 3.2. Molecular regulation of EMT -- 4. The role of EMT in promoting tumor development and metastasis -- 4.1. EMT-driven tumor invasion and metastasis negatively impact patient prognosis -- 4.2. EMT pathways and EMT-transcription factors likely drive oncogenesis -- 5. EMT influences the initiation, survival, and metastasis of pancreatic cancer -- 5.1. EMT drives cancer-initiating cell formation and promotes survival in pancreatic cancer -- 5.2. EMT and PDAC metastasis -- 6. EMT as a therapeutic target for PDAC -- 7. Perspectives, challenges and future directions -- Glossary -- References.