Cargando…

Polish quantum chemistry from Ko�os to now /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : Academic Press, 2023.
Colección:Advances in quantum chemistry ; 87
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Polish Quantum Chemistry from Ko�os to Now
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Review: From the Ko�os-Wolniewicz calculations to the quantum-electrodynamic treatment of the hydrogen molecule: Compet ...
  • 1. Introduction
  • 2. The nonrelativistic energy
  • 2.1. The Born-Oppenheimer energy curves
  • 2.1.1. James-Coolidge and Ko�os-Wolniewicz wave functions
  • 2.1.2. Explicitly correlated Gaussian wave functions
  • 2.1.3. Exponential wave functions
  • 2.1.4. Electronically excited states
  • 2.2. Adiabatic and nonadiabatic corrections
  • 2.2.1. James-Coolidge and Ko�os-Wolniewicz wave functions
  • 2.2.2. Born-Handy method
  • 2.2.3. Nonadiabatic perturbation theory
  • 2.3. Direct nonadiabatic calculations
  • 2.3.1. Ko�os and Wolniewicz calculations
  • 2.3.2. Nonadiabatic explicitly correlated Gaussian wave functions
  • 2.3.3. Nonadiabatic James-Coolidge wave functions
  • 3. Relativistic corrections
  • 3.1. Ko�os and Wolniewicz calculations
  • 3.2. Relativistic correction in NAPT
  • 3.3. Relativistic correction in DNA approach
  • 4. Quantum electrodynamic corrections
  • 4.1. The complete leading QED correction
  • 4.2. Higher order QED corrections
  • 5. Theory vs experiment
  • 6. Summary
  • Acknowledgments
  • References
  • Review: How to make symmetry-adapted perturbation theory more accurate?
  • 1. Introduction
  • 2. Theoretical foundations of SAPT
  • 3. Making SAPT more accurate for typical systems
  • 3.1. Formulation through monomer properties
  • 3.2. SAPT(CC)
  • 3.3. Improvements to SAPT(DFT)
  • 3.4. Exchange energies beyond the S approximation
  • 3.5. Explicitly correlated SAPT
  • 4. Enabling accurate SAPT data for new systems
  • 4.1. Multireference SAPT
  • 4.2. Spin-flip SAPT for multiplet splittings
  • 5. Summary
  • Acknowledgments
  • References.
  • Review: Advanced models of coupled-cluster theory for the ground, excited, and ionized states
  • 1. Introduction
  • 2. Elementary definitions
  • 3. Single reference coupled-cluster (SRCC) approach
  • 4. Equation-of-motion coupled-cluster (EOM-CC) approach
  • 4.1. Electronic excited states: EE-EOM-CC
  • 4.2. Ionized and electron-attached states
  • 4.2.1. IP-EOM-CC and EA-EOM-CC approaches
  • 4.2.2. DIP-EOM-CC and DEA-EOM-CC approaches
  • 5. Multireference coupled-cluster (MRCC) approach
  • 5.1. General considerations
  • 5.2. Hilbert-space formulation of multireference coupled-cluster approach
  • 5.3. Fock-space multireference coupled-cluster approach
  • 5.4. Intermediate Hamiltonian: IH-FS-MRCC
  • 5.4.1. Sector (1,1)
  • 5.4.2. Sector (2,0)
  • 6. Nonstandard realizations of the coupled-cluster theory
  • 7. Final remarks
  • Acknowledgments
  • References
  • Chapter One: Electronic convection in resultant information-theoretic description of molecular states and communications
  • 1. Introduction
  • 2. Continuities of wavefunction components
  • 3. Phase supplements of classical entropic descriptors
  • 4. Probability and current networks
  • 5. Internal ensembles of charge-transfer states
  • 6. Continuity of chemical potential descriptors
  • 7. Conclusion
  • References
  • Chapter Two: Coupled-cluster downfolding techniques: A review of existing applications in classical and quantum computing ...
  • 1. Introduction
  • 2. Theory
  • 2.1. Non-Hermitian CC downfolding
  • 2.2. Hermitian CC downfolding
  • 3. Quantum flows
  • 3.1. Non-Hermitian CC flows
  • 3.2. Hermitian CC flows
  • 4. Time-dependent CC extensions
  • 5. Green�s function applications
  • 6. Review of applications
  • 6.1. Numerical validation of the SES-CC theorem
  • 6.2. Approximations based on quantum flows
  • 6.3. Quantum computing
  • 7. Conclusions
  • Acknowledgments
  • References.
  • Chapter Three: Exploring the attosecond laser-driven electron dynamics in the hydrogen molecule with different real-time ...
  • 1. Introduction
  • 2. Theoretical methods
  • 2.1. The RT-TDCI theory
  • 2.2. Reducing the RT-TDCISD propagation space
  • 2.3. Computational details
  • 3. Results and discussion
  • 4. Conclusion
  • Acknowledgments
  • References
  • Chapter Four: Generalized exciton with a noninteger particle and hole charge as an excitation order
  • 1. Introduction
  • 2. The GE concept and the EO descriptor
  • 3. EO descriptors and spatial GE distributions for the lowest excitations of the prototype molecules
  • 3.1. BH molecule
  • 3.2. Hydrogen chains
  • 3.3. 1,3-Butadiene molecule
  • 4. Discussion and conclusions
  • Acknowledgments
  • References
  • Chapter Five: Potential energy surface of Li-O2 system for cold collisions
  • 1. Introduction
  • 2. The ground state of Li-O2 interaction potential: Lithium superoxide
  • 3. Methods
  • 4. Results of ab initio calculations
  • 4.1. Li-O2 high-spin interactions
  • 4.2. Low-spin potential
  • 5. Ultracold collision calculations: Sensitivity of the scattering length on details of the potential
  • 6. Summary and conclusions
  • Data availability
  • Acknowledgments
  • References
  • Chapter Six: How competitive are expansions in orbital products with explicitly correlated expansions for helium dimer?
  • 1. Introduction
  • 2. ECG wave functions
  • 3. ECG calculations and extrapolations
  • 4. Calculations in orbital bases
  • 5. Comparison of ECG and orbital calculations
  • 6. Comparison of the ECG potential with BO potentials from literature
  • 7. Conclusions
  • Acknowledgments
  • References
  • Chapter Seven: Nonrelativistic non-Born-Oppenheimer approach for calculating atomic and molecular spectra using all-parti ...
  • 1. Introduction.
  • 2. Separation of the center-of-mass motion from the total nonrelativistic Hamiltonian of the system
  • 3. Generation of the Basis set in a non-BO calculation
  • 4. Examples of non-BO atomic and molecular calculations
  • 5. Challenges of non-BO calculations
  • 6. Summary and future directions
  • Acknowledgments
  • References
  • Chapter Eight: Relativistic perturbative and infinite-order two-component methods for heavy elements: Radium atom
  • 1. Introduction
  • 2. The two-component methodology
  • 2.1. The generalized Douglas-Kroll-Hess transformation up to arbitrary order
  • 2.2. Exact decoupling of the Dirac Hamiltonian: The IOTC method
  • 3. Computational details
  • 4. Results and discussion
  • References
  • Chapter Nine: Physically meaningful solutions of optimized effective potential equations in a finite basis set within KS- ...
  • 1. Introduction
  • 2. Theory
  • 3. Computational details
  • 4. Results
  • 5. Conclusions
  • Acknowledgments
  • Author contributions
  • Data availability
  • References
  • Chapter Ten: Methane activation and transformation to ethylene on Mo-(oxy)carbide as a key step of CH4 to aromatics
  • 1. Introduction
  • 2. Computational methods
  • 3. Results and discussion
  • 3.1. Mechanistic studies of methane coupling to ethylene
  • 3.2. Influence of catalyst particle size and its composition on methane activation
  • 4. Conclusions
  • Acknowledgments
  • References
  • Chapter Eleven: Molecular systems in spatial confinement: Variation of linear and nonlinear electrical response of molecu ...
  • 1. Introduction
  • 2. The spatial confinement models and methodology of quantum chemical calculations
  • 3. Results and discussion
  • 4. Concluding remarks
  • Acknowledgment
  • References
  • Chapter Twelve: Interparticle correlations and chemical bonding from physical side: Covalency vs atomicity and ionicity
  • 1. Motivation.
  • 2. Method: First and second quantization combined
  • 3. True covalency, ionicity, atomicity: H2 molecule
  • 3.1. Two-particle wave function and its basic properties-Analytic solution
  • 3.2. Toward complementary characterization of the chemical bond: The case of H2 molecule
  • 3.3. Atomicity as the onset of localization and consistent characterization of the chemical bond
  • 4. Many-body covalency in related systems
  • 4.1. LiH and HeH
  • 4.2. Essential extension: The hydrogen bond-An outline
  • 5. Outlook
  • Acknowledgments
  • References
  • Further reading
  • Chapter Thirteen: ETS-NOCV and molecular electrostatic potential-based picture of chemical bonding
  • 1. Introduction
  • 2. Theory
  • 3. Computational details and models
  • 4. Results and discussion
  • 5. Concluding remarks
  • Acknowledgments
  • References
  • Chapter Fourteen: From bulk to surface-Transferability of water atomic charges
  • 1. Introduction
  • 2. Computational details
  • 3. Results and discussion
  • 4. Summary
  • Acknowledgments
  • References
  • Index.