|
|
|
|
LEADER |
00000cam a22000007a 4500 |
001 |
SCIDIR_on1381441698 |
003 |
OCoLC |
005 |
20231120010743.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
230609s2023 xx o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d SFB
|d OPELS
|d UKAHL
|d OCLCF
|d UKMGB
|
015 |
|
|
|a GBC376510
|2 bnb
|
016 |
7 |
|
|a 021026930
|2 Uk
|
020 |
|
|
|a 9780443185953
|q (electronic bk.)
|
020 |
|
|
|a 0443185956
|q (electronic bk.)
|
020 |
|
|
|z 0443185948
|
020 |
|
|
|z 9780443185946
|
035 |
|
|
|a (OCoLC)1381441698
|
050 |
|
4 |
|a QD462
|
082 |
0 |
4 |
|a 541.28
|
245 |
0 |
0 |
|a Polish quantum chemistry from Ko�os to now /
|c edited by Monika Musia�, Ireneusz Grabowski.
|
260 |
|
|
|a [S.l.] :
|b Academic Press,
|c 2023.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
490 |
0 |
|
|a Advances in quantum chemistry ;
|v 87
|
505 |
0 |
|
|a Intro -- Polish Quantum Chemistry from Ko�os to Now -- Copyright -- Contents -- Contributors -- Preface -- Review: From the Ko�os-Wolniewicz calculations to the quantum-electrodynamic treatment of the hydrogen molecule: Compet ... -- 1. Introduction -- 2. The nonrelativistic energy -- 2.1. The Born-Oppenheimer energy curves -- 2.1.1. James-Coolidge and Ko�os-Wolniewicz wave functions -- 2.1.2. Explicitly correlated Gaussian wave functions -- 2.1.3. Exponential wave functions -- 2.1.4. Electronically excited states -- 2.2. Adiabatic and nonadiabatic corrections -- 2.2.1. James-Coolidge and Ko�os-Wolniewicz wave functions -- 2.2.2. Born-Handy method -- 2.2.3. Nonadiabatic perturbation theory -- 2.3. Direct nonadiabatic calculations -- 2.3.1. Ko�os and Wolniewicz calculations -- 2.3.2. Nonadiabatic explicitly correlated Gaussian wave functions -- 2.3.3. Nonadiabatic James-Coolidge wave functions -- 3. Relativistic corrections -- 3.1. Ko�os and Wolniewicz calculations -- 3.2. Relativistic correction in NAPT -- 3.3. Relativistic correction in DNA approach -- 4. Quantum electrodynamic corrections -- 4.1. The complete leading QED correction -- 4.2. Higher order QED corrections -- 5. Theory vs experiment -- 6. Summary -- Acknowledgments -- References -- Review: How to make symmetry-adapted perturbation theory more accurate? -- 1. Introduction -- 2. Theoretical foundations of SAPT -- 3. Making SAPT more accurate for typical systems -- 3.1. Formulation through monomer properties -- 3.2. SAPT(CC) -- 3.3. Improvements to SAPT(DFT) -- 3.4. Exchange energies beyond the S approximation -- 3.5. Explicitly correlated SAPT -- 4. Enabling accurate SAPT data for new systems -- 4.1. Multireference SAPT -- 4.2. Spin-flip SAPT for multiplet splittings -- 5. Summary -- Acknowledgments -- References.
|
505 |
8 |
|
|a Review: Advanced models of coupled-cluster theory for the ground, excited, and ionized states -- 1. Introduction -- 2. Elementary definitions -- 3. Single reference coupled-cluster (SRCC) approach -- 4. Equation-of-motion coupled-cluster (EOM-CC) approach -- 4.1. Electronic excited states: EE-EOM-CC -- 4.2. Ionized and electron-attached states -- 4.2.1. IP-EOM-CC and EA-EOM-CC approaches -- 4.2.2. DIP-EOM-CC and DEA-EOM-CC approaches -- 5. Multireference coupled-cluster (MRCC) approach -- 5.1. General considerations -- 5.2. Hilbert-space formulation of multireference coupled-cluster approach -- 5.3. Fock-space multireference coupled-cluster approach -- 5.4. Intermediate Hamiltonian: IH-FS-MRCC -- 5.4.1. Sector (1,1) -- 5.4.2. Sector (2,0) -- 6. Nonstandard realizations of the coupled-cluster theory -- 7. Final remarks -- Acknowledgments -- References -- Chapter One: Electronic convection in resultant information-theoretic description of molecular states and communications -- 1. Introduction -- 2. Continuities of wavefunction components -- 3. Phase supplements of classical entropic descriptors -- 4. Probability and current networks -- 5. Internal ensembles of charge-transfer states -- 6. Continuity of chemical potential descriptors -- 7. Conclusion -- References -- Chapter Two: Coupled-cluster downfolding techniques: A review of existing applications in classical and quantum computing ... -- 1. Introduction -- 2. Theory -- 2.1. Non-Hermitian CC downfolding -- 2.2. Hermitian CC downfolding -- 3. Quantum flows -- 3.1. Non-Hermitian CC flows -- 3.2. Hermitian CC flows -- 4. Time-dependent CC extensions -- 5. Green�s function applications -- 6. Review of applications -- 6.1. Numerical validation of the SES-CC theorem -- 6.2. Approximations based on quantum flows -- 6.3. Quantum computing -- 7. Conclusions -- Acknowledgments -- References.
|
505 |
8 |
|
|a Chapter Three: Exploring the attosecond laser-driven electron dynamics in the hydrogen molecule with different real-time ... -- 1. Introduction -- 2. Theoretical methods -- 2.1. The RT-TDCI theory -- 2.2. Reducing the RT-TDCISD propagation space -- 2.3. Computational details -- 3. Results and discussion -- 4. Conclusion -- Acknowledgments -- References -- Chapter Four: Generalized exciton with a noninteger particle and hole charge as an excitation order -- 1. Introduction -- 2. The GE concept and the EO descriptor -- 3. EO descriptors and spatial GE distributions for the lowest excitations of the prototype molecules -- 3.1. BH molecule -- 3.2. Hydrogen chains -- 3.3. 1,3-Butadiene molecule -- 4. Discussion and conclusions -- Acknowledgments -- References -- Chapter Five: Potential energy surface of Li-O2 system for cold collisions -- 1. Introduction -- 2. The ground state of Li-O2 interaction potential: Lithium superoxide -- 3. Methods -- 4. Results of ab initio calculations -- 4.1. Li-O2 high-spin interactions -- 4.2. Low-spin potential -- 5. Ultracold collision calculations: Sensitivity of the scattering length on details of the potential -- 6. Summary and conclusions -- Data availability -- Acknowledgments -- References -- Chapter Six: How competitive are expansions in orbital products with explicitly correlated expansions for helium dimer? -- 1. Introduction -- 2. ECG wave functions -- 3. ECG calculations and extrapolations -- 4. Calculations in orbital bases -- 5. Comparison of ECG and orbital calculations -- 6. Comparison of the ECG potential with BO potentials from literature -- 7. Conclusions -- Acknowledgments -- References -- Chapter Seven: Nonrelativistic non-Born-Oppenheimer approach for calculating atomic and molecular spectra using all-parti ... -- 1. Introduction.
|
505 |
8 |
|
|a 2. Separation of the center-of-mass motion from the total nonrelativistic Hamiltonian of the system -- 3. Generation of the Basis set in a non-BO calculation -- 4. Examples of non-BO atomic and molecular calculations -- 5. Challenges of non-BO calculations -- 6. Summary and future directions -- Acknowledgments -- References -- Chapter Eight: Relativistic perturbative and infinite-order two-component methods for heavy elements: Radium atom -- 1. Introduction -- 2. The two-component methodology -- 2.1. The generalized Douglas-Kroll-Hess transformation up to arbitrary order -- 2.2. Exact decoupling of the Dirac Hamiltonian: The IOTC method -- 3. Computational details -- 4. Results and discussion -- References -- Chapter Nine: Physically meaningful solutions of optimized effective potential equations in a finite basis set within KS- ... -- 1. Introduction -- 2. Theory -- 3. Computational details -- 4. Results -- 5. Conclusions -- Acknowledgments -- Author contributions -- Data availability -- References -- Chapter Ten: Methane activation and transformation to ethylene on Mo-(oxy)carbide as a key step of CH4 to aromatics -- 1. Introduction -- 2. Computational methods -- 3. Results and discussion -- 3.1. Mechanistic studies of methane coupling to ethylene -- 3.2. Influence of catalyst particle size and its composition on methane activation -- 4. Conclusions -- Acknowledgments -- References -- Chapter Eleven: Molecular systems in spatial confinement: Variation of linear and nonlinear electrical response of molecu ... -- 1. Introduction -- 2. The spatial confinement models and methodology of quantum chemical calculations -- 3. Results and discussion -- 4. Concluding remarks -- Acknowledgment -- References -- Chapter Twelve: Interparticle correlations and chemical bonding from physical side: Covalency vs atomicity and ionicity -- 1. Motivation.
|
505 |
8 |
|
|a 2. Method: First and second quantization combined -- 3. True covalency, ionicity, atomicity: H2 molecule -- 3.1. Two-particle wave function and its basic properties-Analytic solution -- 3.2. Toward complementary characterization of the chemical bond: The case of H2 molecule -- 3.3. Atomicity as the onset of localization and consistent characterization of the chemical bond -- 4. Many-body covalency in related systems -- 4.1. LiH and HeH -- 4.2. Essential extension: The hydrogen bond-An outline -- 5. Outlook -- Acknowledgments -- References -- Further reading -- Chapter Thirteen: ETS-NOCV and molecular electrostatic potential-based picture of chemical bonding -- 1. Introduction -- 2. Theory -- 3. Computational details and models -- 4. Results and discussion -- 5. Concluding remarks -- Acknowledgments -- References -- Chapter Fourteen: From bulk to surface-Transferability of water atomic charges -- 1. Introduction -- 2. Computational details -- 3. Results and discussion -- 4. Summary -- Acknowledgments -- References -- Index.
|
650 |
|
0 |
|a Quantum chemistry.
|
650 |
|
0 |
|a Quantum chemistry
|x Research
|z Poland.
|
650 |
|
7 |
|a Quantum chemistry.
|2 fast
|0 (OCoLC)fst01085086
|
651 |
|
7 |
|a Poland.
|2 fast
|0 (OCoLC)fst01206891
|
776 |
0 |
8 |
|i ebook version :
|z 9780443185953
|
776 |
0 |
8 |
|c Original
|z 0443185948
|z 9780443185946
|w (OCoLC)1369516880
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00653276/87
|z Texto completo
|