MARC

LEADER 00000cam a22000007a 4500
001 SCIDIR_on1380392794
003 OCoLC
005 20231120010741.0
006 m o d
007 cr un|---aucuu
008 230527s2023 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d UKMGB  |d UKAHL  |d OCLCF  |d OCLCO 
015 |a GBC393584  |2 bnb 
016 7 |a 021054900  |2 Uk 
020 |a 9780443186394  |q (electronic bk.) 
020 |a 0443186391  |q (electronic bk.) 
020 |z 9780443186387 
020 |z 0443186383 
035 |a (OCoLC)1380392794 
050 4 |a RM301.42 
082 0 4 |a 615.19  |2 23/eng/20230622 
245 0 0 |a Cheminformatics, QSAR and machine learning applications for novel drug development /  |c edited by Kunal Roy. 
260 |a [S.l.] :  |b Academic Press,  |c 2023. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a <P><b>Section I: Introduction </b>1. Quantitative structure-activity relationships (QSARs) in medicinal chemistry 2. Computer-aided Drug Design -- An overview 3. Structure-based virtual screening in Drug Discovery 4. The impact of Artificial Intelligence methods on drug design</p> <p><b>Section 2. Methods and Case studies </b>5. Graph Machine Learning in Drug Discovery 6. Support Vector Machine in Drug Design 7. Understanding protein-ligand interactions using state-of-the-art computer simulation methods 8. Structure-based methods in drug design 9. Structure-based virtual screening 10. Deep learning in drug design 11. Computational methods in the analysis of viral-host interactions 12. Chemical space and Molecular Descriptors for QSAR studies 13. Machine learning methods in drug design 14. Deep learning methodologies in drug design 15. Molecular dynamics in predicting stability of drug receptor interactions</p> <p><b>Section 3. Special topics </b>16. Towards models for bioaccumulation suitable for the pharmaceutical domain 17. Machine Learning as a Modeling Approach for the Account of Nonlinear Information in MIA-QSAR Applications: A Case Study with SVM Applied to Antimalarial (Aza)aurones 18. Deep Learning using molecular image of chemical structure 19. Recent Advances in Deep Learning Enabled Approaches for Identification of Molecules of Therapeutics Relevance 20. Computational toxicology of pharmaceuticals 21. Ecotoxicological QSAR modelling of pharmaceuticals 22. Computational modelling of drugs for neglected diseases 23. Modelling ADMET properties based on Biomimetic Chromatographic Data 24. A systematic chemoinformatic analysis of chemical space, scaffolds and antimicrobial activity of LpxC inhibitors</p> <p><b>Section 4. Tools and databases </b>25. Tools and Software for Computer Aided Drug Design and Discovery 26. Machine learning resources for drug design 27. Building Bioinformatics Web Applications with Streamlit 28. Free tools and databases in ligand and structure-based drug design<i></p></i> 
650 0 |a Drugs  |x Structure-activity relationships. 
650 0 |a Drug development. 
650 0 |a QSAR (Biochemistry) 
650 0 |a Cheminformatics. 
650 0 |a Machine learning  |x Therapeutic use. 
650 2 |a Quantitative Structure-Activity Relationship  |0 (DNLM)D021281 
650 2 |a Cheminformatics  |0 (DNLM)D000080911 
650 6 |a M&#xFFFD;edicaments  |x Relations structure-activit&#xFFFD;e.  |0 (CaQQLa)201-0028672 
650 6 |a M&#xFFFD;edicaments  |x D&#xFFFD;eveloppement.  |0 (CaQQLa)201-0306620 
650 6 |a Relations structure-activit&#xFFFD;e quantitatives (Biochimie)  |0 (CaQQLa)201-0379113 
650 6 |a Chimio-informatique.  |0 (CaQQLa)201-0422426 
650 6 |a Apprentissage automatique  |0 (CaQQLa)201-0131435  |x Emploi en th&#xFFFD;erapeutique.  |0 (CaQQLa)201-0373975 
650 7 |a Cheminformatics  |2 fast  |0 (OCoLC)fst00853337 
650 7 |a Drug development  |2 fast  |0 (OCoLC)fst00898670 
650 7 |a Drugs  |x Structure-activity relationships  |2 fast  |0 (OCoLC)fst00898929 
650 7 |a QSAR (Biochemistry)  |2 fast  |0 (OCoLC)fst01084801 
776 0 8 |c Original  |z 0443186383  |z 9780443186387  |w (OCoLC)1368073843 
776 0 8 |i Print version:  |t Cheminformatics, QSAR and machine learning applications for novel drug development  |z 9780443186387  |w (OCoLC)1381931277 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780443186387  |z Texto completo