Cargando…

ADVANCES IN MICROBIAL PHYSIOLOGY. 83

Advances in Microbial Physiology, Volume 150 in this important serial, highlights new advances in the field with this new volume including content by an international board of authors. Chapters in this new release include Organization of respiratory chains in the bacterial cell, Anaerobic methane ox...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : ELSEVIER ACADEMIC PRESS, 2023.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Advances in Microbial Physiology
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: The elements of life: A biocentric tour of the periodic table
  • 1. Elemental requirements for life
  • 1.1. Macronutrients, micronutrients, and trace elements
  • 1.2. The challenge of defining essential elements
  • 1.3. General strategies of elemental economy
  • 1.4. Early earth and cell composition
  • 2. Elemental economy and life�s macronutrients (CHNOPS)
  • 2.1. Hydrogen (1H) and oxygen (8O)
  • 2.2. Carbon (6C) and nitrogen (7N)
  • 2.3. Phosphorus (15P)
  • 2.4. Sulfur (16S)
  • 3. Monovalent cations (group 1)
  • 3.1. Lithium (3Li)
  • 3.2. Sodium (11Na)
  • 3.3. Potassium (19K)
  • 3.4. Rubidium (37Rb) and Cesium (55Cs)
  • 4. Divalent cations (group 2)
  • 4.1. Beryllium (4Be)
  • 4.2. Magnesium (12Mg)
  • 4.3. Calcium (20Ca)
  • 4.3.1. Calcium and biomineralization
  • 4.4. Strontium (38Sr)
  • 4.5. Barium (56Ba)
  • 5. Rare earth elements and the lanthanides: Group 3
  • 5.1. Scandium (21Sc) and yttrium (39Y)
  • 5.2. Lanthanides: Lanthanum (57La), cerium (58Ce), Praseodyminium (59Pr), neodymium (60Nd), and samarium (62Sm)
  • 5.3. Actinide elements
  • 5.3.1. Uranium (92U)
  • 6. Refractory transition metals (groups 4 through 6)
  • 6.1. Group 4: The titanium group
  • 6.1.1. Titanium (22Ti)
  • 6.1.2. Zirconium (40Zi) and hafnium (72Hf)
  • 6.2. Group 5: The vanadium group
  • 6.2.1. Vanadium (23V)
  • 6.2.2. Niobium (41Nb) and tantalum (73Ta)
  • 6.3. Group 6: The chromium group
  • 6.3.1. Chromium (24Cr)
  • 6.3.2. Molybdenum (42Mo)
  • 6.3.3. Tungsten (74W)
  • 7. Transition metals: Groups 7 through 12
  • 7.1. Manganese (25Mn)
  • 7.2. Iron (26Fe)
  • 7.3. Cobalt (27Co)
  • 7.4. Nickel (28Ni)
  • 7.5. Copper (29Cu)
  • 7.6. Zinc (30Zn)
  • 7.7. Heavier metals
  • 7.7.1. Technetium (43Tc) and rhenium (75Re)
  • 7.7.2. The platinum group metals (Ru,Os,Rh,Ir,Pd,Pt).
  • 7.7.3. Silver (47Ag), and gold (79Au)
  • 7.7.4. Cadmium (48Cd) and mercury (80Hg)
  • 8. Groups 13-16: Metals and metalloids
  • 8.1. Group 13: The boron (5B) group
  • 8.1.1. Boron (5B)
  • 8.1.2. Aluminum (13Al)
  • 8.1.3. Gallium (31Ga)
  • 8.1.4. Indium (49In) and thallium (81Tl)
  • 8.2. Group 14: The carbon group
  • 8.2.1. Silicon (14Si) and Si biomineralization
  • 8.2.2. Germanium (32Ge)
  • 8.2.3. Tin (50Sn) and Lead (82Pb)
  • 8.3. Group 15: The nitrogen group
  • 8.3.1. Arsenic (33As) and antimony (51Sb)
  • 8.3.2. Bismuth (83Bi)
  • 8.4. Group 16: The oxygen family
  • 8.4.1. Selenium (34Se)
  • 8.4.2. Tellurium (52Te)
  • 8.4.3. Polonium (84Po)
  • 9. Group 17: Halogens
  • 9.1. Fluorine (9F)
  • 9.2. Chlorine (17Cl)
  • 9.3. Bromine (35Br)
  • 9.4. Iodine (53I)
  • 10. Essential elements revisited
  • 10.1. Essential elements for humans
  • 10.2. Essential elements for plants
  • 10.3. A proposed minimal set of essential elements
  • 10.4. An expanding suite of beneficial elements
  • 10.5. The elements of life: A web-based resource
  • 11. Elements of life: Peering into the future
  • Acknowledgments
  • References
  • Chapter Two: Biological functions of bacterial lysophospholipids
  • 1. General characteristics of lysophospholipids
  • 2. Biology of the major lysophospholipid species
  • 2.1. Lysophosphatidic acid
  • 2.1.1. Characteristics of lysoPA
  • 2.1.2. Functions of lysoPA
  • 2.1.3. Effects of host-derived lysoPA on the bacteria-host interaction
  • 2.1.4. Role of lysoPA in host cells
  • 2.2. Lysophosphatidylcholine
  • 2.2.1. Characteristics of lysoPC
  • 2.2.2. Function of lysoPC in bacteria
  • 2.2.3. Role of lysoPC in bacterial pathogenesis
  • 2.3. Lysophosphatidylethanolamine
  • 2.3.1. Characteristics of lysoPE
  • 2.3.2. Function of lysoPE in bacteria
  • 2.3.3. Antimicrobial properties of lysoPE
  • 2.3.4. LysoPE in the bacteria-host interaction.
  • 2.4. Lysophosphatidylglycerol
  • 2.4.1. Characteristics of lysoPG
  • 2.5. Lysophosphatidylserine
  • 2.5.1. Characteristics of lysoPS
  • 2.5.2. Functions of lysoPS
  • 2.6. Lysophosphatidylinositol
  • 2.6.1. Characteristics of lysoPI
  • 2.6.2. Biological effects of lysoPI
  • 3. Conclusions
  • Acknowledgments
  • References
  • Chapter Three: Redefining the bacterial Type I protein secretion system
  • 1. Introduction
  • 2. Type 1 secretion system components
  • 2.1. Outer membrane factors
  • 2.2. Periplasmic adaptor proteins
  • 2.3. ABC transporters
  • 3. Substrate secretion through T1SS
  • 4. Redefining the type I secretion system
  • 4.1. T1SSa: RTX proteins
  • 4.1.1. T1SSa (i)
  • 4.1.2. T1SSa (ii)
  • 4.1.3. T1SSa (iii)
  • 4.2. T1SSb: Non-RTX Ca-binding proteins
  • 4.3. T1SSc: Non-RTX proteins
  • 4.4. T1SSd: Class II microcins
  • 4.5. T1SSe: Lipoprotein secretion system
  • 5. Biotechnological potential of the T1SS
  • 6. Conclusion
  • References
  • Chapter Four: Purine catabolism by enterobacteria
  • 1. Introduction
  • 1.1. Purine catabolic pathways in enterobacteria
  • 1.1.1. Escherichia, Klebsiella-Raoultella, Salmonella
  • 1.1.2. Pathway distribution
  • 1.2. Nitrogen regulation (Ntr)
  • 1.3. Purine uptake
  • 2. HPX pathway: Aerobic purine catabolism in Klebsiella spp.
  • 2.1. The hpxE-hpxT gene module: (hypo)xanthine to allantoin
  • 2.1.1. Transcriptional regulation in the hpxE-hpxT gene module
  • 2.1.2. Enzymes encoded in the hpxE-hpxT gene module
  • 2.2. The guaD-hpxB gene module: Guanine and allantoin
  • 2.3. The hpxZ-hpxK gene module: Allantoate catabolism
  • 2.3.1. Transcriptional regulation in the hpxZ-hpxK gene module
  • 2.3.2. Enzymes encoded by the hpxK and hpxJ genes
  • 2.3.3. Enzymes encoded by the hpxXY, hpxZ and hpxW genes
  • 2.4. Pathway assembly through diverse metabolic modules
  • 3. ALL pathway: Anaerobic allantoin catabolism.
  • 3.1. ALL pathway gene cluster organization and regulation
  • 3.1.1. Pathway-specific regulation
  • 3.1.2. Nitrogen source regulation
  • 3.1.3. ALL pathway gene cluster organization and regulation
  • 3.2. Enzymes encoded by the ALL pathway gene cluster
  • 3.3. ALL pathway gene cluster distribution in enterobacteria
  • 4. XDH pathway: Anaerobic urate catabolism
  • 4.1. XDH pathway gene cluster distribution, organization, and transcriptional regulation
  • 4.2. Anaerobic formate-dependent urate reduction
  • 4.2.1. The YgfT, AegA and YgfK GltD-family iron-Sulphur flavoenzymes
  • 4.2.2. Formate as an electron donor for anaerobic urate catabolism
  • 4.2.3. Does urate reduction involve flavin-based electron bifurcation?
  • 4.3. XDH pathway catabolic steps after urate reduction
  • 4.4. Genes for xanthine dehydrogenase-family enzymes and their assembly
  • 4.4.1. Xanthine dehydrogenase
  • 4.4.2. Dehydrogenase-family assembly
  • 4.4.3. Aldehyde reductase-like enzyme
  • 4.5. Anaerobic purine catabolism in Escherichia and Klebsiella spp.
  • 5. Purine catabolism by enterobacteria
  • Acknowledgement
  • References
  • Chapter Five: Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conserv ...
  • 1. Introduction
  • 2. C4-DC catabolism by Enterobacteriaceae in the healthy and the inflamed intestine: Fumarate respiration vs C4-DC oxidation
  • 3. Fumarate as an oxidant for pyrimidine nucleotide, heme and protein disulfide synthesis
  • 3.1. Pyrimidine ribonucleotide biosynthesis
  • 3.2. Heme synthesis
  • 3.3. Thiol-disulfide oxidoreductases
  • 4. Fumarate as an electron acceptor for redox balancing and redox homeostasis
  • 5. l-Aspartate plays a universal and prominent role in exogenous fumarate respiration and in biosynthesis
  • 5.1. Transport of l-aspartate by DcuA
  • 5.2. l-Aspartate as a building block.
  • 5.3. l-Aspartate as an ammonium source: The DcuA-AspA pathway and its regulation by GlnB
  • 6. Expression control of C4-DC catabolic genes: Regulation by DcuS-DcuR and interplay with catabolite control
  • 7. Regulatory role of the C4-DC transporter proteins
  • 7.1. Interaction between DctA and EIIA of the PTS: Control of DctA activity and substrate exclusion?
  • 7.2. The transporters DctA or DcuB as components of the DcuS sensor complex
  • 8. Conclusion: An essential role for fumarate reduction in the enterobacterial anabolism
  • Acknowledgements
  • References
  • Chapter Six: Diversity of algae and their biotechnological potential
  • 1. Introduction
  • 2. Evolution of algae and land plants
  • 2.1. Evolution of eukaryotes and algae
  • 2.2. Evolution of land plants
  • 2.3. Algal taxonomy in a phylogenetic world
  • 2.3.1. Organisation of algal taxonomy based on Ruggiero et al.
  • 2.3.2. Organisation of algal taxonomy based on Adl et al.
  • 3. Metabolic diversity of algae
  • 4. Genetic engineering of algae
  • 4.1. Transformation
  • 4.2. Selection pressure and polyploidy
  • 4.3. Methods used to transform algal cells
  • 5. Biotechnological potential of algae
  • 5.1. Raceway ponds and extremophilic algae
  • 5.2. Raceway ponds vs photobioreactors
  • 5.3. Heterotrophic and mixotrophic growth
  • 5.4. Using microalgae as food or food additives
  • 5.5. Future prospects for algal biotechnology
  • 6. Conclusions
  • The place of algae in the living world
  • Acknowledgments
  • References.