Blockchain technology solutions for the security of IoT-based healthcare systems /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Academic Press,
2023.
|
Colección: | Cognitive data science in sustainable computing.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Blockchain Technology Solutions for the Security of IoT-Based Healthcare Systems
- Copyright
- Contents
- Contributors
- About the editors
- Preface
- Chapter 1: Integration of E-health and Internet of Things
- 1. Introduction
- 2. Overview of protocol stack in IoT networks
- 3. Scheduling protocols for best effort IoT networks
- 4. Routing protocol for best effort IoT networks
- 4.1. Reactive-based AODV-RPL protocol for deterministic IoT networks
- 4.2. Overview of AODV-RPL mode of operation (MoP)
- 4.3. RREQ option
- 4.4. RREP option
- 4.5. Gratuitous RREP
- 5. Experimental results
- 6. Conclusion
- References
- Chapter 2: Industry 4.0 technologies for healthcare: Applications, opportunities, and challenges
- 1. Introduction
- 2. Literature review
- 2.1. ICT for Health 4.0
- 2.2. IoT in Health 4.0
- 2.3. Cloud and fog computing in Health 4.0
- 2.4. Big data in Health 4.0
- 3. Findings
- 3.1. Applications for Health 4.0
- 3.1.1. Health monitoring
- 3.1.2. Prevention and self-management
- 3.1.3. Smart medication and monitoring
- 3.1.4. Precision medicine
- 3.1.5. Cloud-based health information systems
- 3.1.6. Telemedicine for disease monitoring
- 4. Transformation case of the pharmaceutical industry
- 5. Opportunities and challenges
- 6. Future insights
- 7. Conclusions
- References
- Chapter 3: Integrated machine learning techniques for preserving privacy in Internet of Things (IoT) systems
- 1. Introduction
- 2. IoT and its architecture
- 2.1. IoT elements
- 2.1.1. Identification
- 2.1.2. Communication
- 2.1.3. Sensing
- 2.1.4. Computation
- 2.2. IoT architecture layer
- 2.2.1. Perception layer
- 2.2.2. Network layer
- 2.2.3. Application layer
- 2.3. IoT application and services
- 2.3.1. Smart cities
- 2.3.2. Smart home
- 2.3.3. Smart transport
- 2.3.4. Smart healthcare
- 2.3.5. Smart agriculture
- 3. IoT and its security
- 3.1. IoT security requirements
- 3.2. Security attacks in IoT and their sources
- 3.2.1. Perception layer attacks
- 3.2.2. Network layer attacks
- 3.2.3. Application layer attacks
- 3.3. IoT issues and challenges
- 3.4. Motivation for ML in IoT
- 4. Machine learning algorithms
- 4.1. Supervised learning
- 4.1.1. Regression techniques
- Linear regression
- Logistic regression
- Nonlinear regression
- 4.1.2. Classification techniques
- Support vector machine (SVM)
- K nearest neighbor (KNN)
- Decision trees
- 4.2. Unsupervised learning
- 4.2.1. K-means clustering
- 4.2.2. Fuzzy C-means clustering
- 4.3. SSL
- 4.4. Reinforcement learning
- 5. ML for IoT
- 5.1. ML for privacy-Protecting applications
- 5.2. ML-based authentication and access control in IoT
- 5.3. ML-based attack and mitigation in IoT
- 5.4. ML-based techniques to address DoS and distributed DoS (DDoS) attacks
- 5.5. ML-based anomaly or intrusion detection system (IDS) in IoT
- 5.6. ML-based malware analysis in IoT