|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
SCIDIR_on1363835103 |
003 |
OCoLC |
005 |
20231120010722.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
221029s2023 ne fo 001 0 eng d |
040 |
|
|
|a UKAHL
|b eng
|e rda
|c UKAHL
|d EBLCP
|d OPELS
|d N$T
|d YDX
|d OCLCF
|d UKMGB
|d OCLCQ
|d OCLCA
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC2K2112
|2 bnb
|
016 |
7 |
|
|a 020802941
|2 Uk
|
020 |
|
|
|a 0323993915
|q electronic book
|
020 |
|
|
|a 9780323993913
|q electronic book
|
020 |
|
|
|z 9780323991995
|q paperback
|
035 |
|
|
|a (OCoLC)1363835103
|
050 |
|
4 |
|a R859.7.S43
|b B56 2023
|
082 |
0 |
4 |
|a 610.285
|2 23/eng/20230317
|
245 |
0 |
0 |
|a Blockchain technology solutions for the security of IoT-based healthcare systems /
|c edited by Bharat Bhushan, Sudhir Kumar Sharma, Muzafer Saracevic, Azedine Boulmakoul.
|
264 |
|
1 |
|a Amsterdam :
|b Academic Press,
|c 2023.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cognitive data science in sustainable computing
|
505 |
0 |
|
|a Intro -- Blockchain Technology Solutions for the Security of IoT-Based Healthcare Systems -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Chapter 1: Integration of E-health and Internet of Things -- 1. Introduction -- 2. Overview of protocol stack in IoT networks -- 3. Scheduling protocols for best effort IoT networks -- 4. Routing protocol for best effort IoT networks -- 4.1. Reactive-based AODV-RPL protocol for deterministic IoT networks -- 4.2. Overview of AODV-RPL mode of operation (MoP) -- 4.3. RREQ option -- 4.4. RREP option -- 4.5. Gratuitous RREP
|
505 |
8 |
|
|a 5. Experimental results -- 6. Conclusion -- References -- Chapter 2: Industry 4.0 technologies for healthcare: Applications, opportunities, and challenges -- 1. Introduction -- 2. Literature review -- 2.1. ICT for Health 4.0 -- 2.2. IoT in Health 4.0 -- 2.3. Cloud and fog computing in Health 4.0 -- 2.4. Big data in Health 4.0 -- 3. Findings -- 3.1. Applications for Health 4.0 -- 3.1.1. Health monitoring -- 3.1.2. Prevention and self-management -- 3.1.3. Smart medication and monitoring -- 3.1.4. Precision medicine -- 3.1.5. Cloud-based health information systems
|
505 |
8 |
|
|a 3.1.6. Telemedicine for disease monitoring -- 4. Transformation case of the pharmaceutical industry -- 5. Opportunities and challenges -- 6. Future insights -- 7. Conclusions -- References -- Chapter 3: Integrated machine learning techniques for preserving privacy in Internet of Things (IoT) systems -- 1. Introduction -- 2. IoT and its architecture -- 2.1. IoT elements -- 2.1.1. Identification -- 2.1.2. Communication -- 2.1.3. Sensing -- 2.1.4. Computation -- 2.2. IoT architecture layer -- 2.2.1. Perception layer -- 2.2.2. Network layer -- 2.2.3. Application layer
|
505 |
8 |
|
|a 2.3. IoT application and services -- 2.3.1. Smart cities -- 2.3.2. Smart home -- 2.3.3. Smart transport -- 2.3.4. Smart healthcare -- 2.3.5. Smart agriculture -- 3. IoT and its security -- 3.1. IoT security requirements -- 3.2. Security attacks in IoT and their sources -- 3.2.1. Perception layer attacks -- 3.2.2. Network layer attacks -- 3.2.3. Application layer attacks -- 3.3. IoT issues and challenges -- 3.4. Motivation for ML in IoT -- 4. Machine learning algorithms -- 4.1. Supervised learning -- 4.1.1. Regression techniques -- Linear regression -- Logistic regression -- Nonlinear regression
|
505 |
8 |
|
|a 4.1.2. Classification techniques -- Support vector machine (SVM) -- K nearest neighbor (KNN) -- Decision trees -- 4.2. Unsupervised learning -- 4.2.1. K-means clustering -- 4.2.2. Fuzzy C-means clustering -- 4.3. SSL -- 4.4. Reinforcement learning -- 5. ML for IoT -- 5.1. ML for privacy-Protecting applications -- 5.2. ML-based authentication and access control in IoT -- 5.3. ML-based attack and mitigation in IoT -- 5.4. ML-based techniques to address DoS and distributed DoS (DDoS) attacks -- 5.5. ML-based anomaly or intrusion detection system (IDS) in IoT -- 5.6. ML-based malware analysis in IoT
|
500 |
|
|
|a Includes index.
|
650 |
|
0 |
|a Medical informatics
|x Security measures.
|
650 |
|
0 |
|a Blockchains (Databases)
|
650 |
|
0 |
|a Internet of things
|x Security measures.
|
650 |
|
6 |
|a M�edecine
|0 (CaQQLa)201-0103112
|x Informatique
|0 (CaQQLa)201-0103112
|x S�ecurit�e
|0 (CaQQLa)201-0373949
|x Mesures.
|0 (CaQQLa)201-0373949
|
650 |
|
6 |
|a Cha�ines de blocs.
|0 (CaQQLa)000300319
|
650 |
|
6 |
|a Internet des objets
|0 (CaQQLa)000269177
|x S�ecurit�e
|0 (CaQQLa)201-0373949
|x Mesures.
|0 (CaQQLa)201-0373949
|
650 |
|
7 |
|a Blockchains (Databases)
|2 fast
|0 (OCoLC)fst01981761
|
655 |
|
0 |
|a Electronic books.
|
700 |
1 |
|
|a Bhushan, Bharat,
|d 1989-
|e editor.
|
700 |
1 |
|
|a Sharma, Sudhir Kumar,
|e editor.
|
700 |
1 |
|
|a Saracevic, Muzafer,
|e editor.
|
700 |
1 |
|
|a Boulmakoul, Azedine,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Blockchain technology solutions for the security of IoT-based healthcare systems
|z 9780323991995
|w (OCoLC)1350637495
|
830 |
|
0 |
|a Cognitive data science in sustainable computing.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323991995
|z Texto completo
|