Cargando…

Monitoring and control of electrical power systems using machine learning techniques /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Espejo, Emilio Barocio (Editor ), Sevilla, Felix Rafael Segundo (Editor ), Korba, Petr (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge MA : Elsevier, [2023]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1 Derivation of generic equivalent models for distribution network analysis using artificial intelligence techniques
  • l2 Disturbance dataset development for machine-learning-based power quality monitoring in distributed generation systems: a practical guide
  • l3 Advances in compression algorithms for PMU and Smart Meter data based on tensor decomposition
  • l4 Machine learning and digital twins: monitoring and control for dynamic security in power systems
  • l5 Synchrophasor applications in distribution systems: real-life experience
  • l6 A graph mapping based supervised machine learning strategy for PMU voltage anomalies' detection and classification in distribution networks
  • l7 Identification of source harmonics in electrical networks using spatiotemporal approaches
  • l8 Power quality harmonic monitoring by the O-splines-based multiresolution signal decomposition
  • l9 Monitoring system for identifying power quality issues in distribution networks using Petri nets and Prony method
  • l10 Dynamic voltage restorer controlled per independent phases for power quality sags-swells mitigation under unbalanced conditions
  • l11 AI application for load forecasting: a comparison of classical and deep learning methodologies
  • l12 Study of harmonics in linear, nonlinear nonsinusoidal electrical circuits by geometric algebra
  • l13 Harmonic sources estimation in distribution systems