Cargando…

Monitoring and control of electrical power systems using machine learning techniques /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Espejo, Emilio Barocio (Editor ), Sevilla, Felix Rafael Segundo (Editor ), Korba, Petr (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge MA : Elsevier, [2023]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1359046349
003 OCoLC
005 20231120010721.0
006 m o d
007 cr cnu---unuuu
008 230123s2023 ne ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d OPELS  |d N$T  |d YDX  |d UKAHL  |d UKMGB  |d OCLCF  |d OCLCO 
015 |a GBC2K6152  |2 bnb 
016 7 |a 020808963  |2 Uk 
019 |a 1370242976 
020 |a 9780323984041  |q electronic book 
020 |a 0323984045  |q electronic book 
020 |z 9780323999045 
020 |z 0323999042 
035 |a (OCoLC)1359046349  |z (OCoLC)1370242976 
050 4 |a TK1007  |b .M65 2023 
082 0 4 |a 621.317  |2 23/eng/20230220 
245 0 0 |a Monitoring and control of electrical power systems using machine learning techniques /  |c edited by Emilio Barocio Espejo, Felix Rafael Segundo Sevilla, Petr Korba. 
264 1 |a Amsterdam, Netherlands ;  |a Oxford, United Kingdom ;  |a Cambridge MA :  |b Elsevier,  |c [2023] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a 1 Derivation of generic equivalent models for distribution network analysis using artificial intelligence techniques -- l2 Disturbance dataset development for machine-learning-based power quality monitoring in distributed generation systems: a practical guide -- l3 Advances in compression algorithms for PMU and Smart Meter data based on tensor decomposition -- l4 Machine learning and digital twins: monitoring and control for dynamic security in power systems -- l5 Synchrophasor applications in distribution systems: real-life experience -- l6 A graph mapping based supervised machine learning strategy for PMU voltage anomalies' detection and classification in distribution networks -- l7 Identification of source harmonics in electrical networks using spatiotemporal approaches -- l8 Power quality harmonic monitoring by the O-splines-based multiresolution signal decomposition -- l9 Monitoring system for identifying power quality issues in distribution networks using Petri nets and Prony method -- l10 Dynamic voltage restorer controlled per independent phases for power quality sags-swells mitigation under unbalanced conditions -- l11 AI application for load forecasting: a comparison of classical and deep learning methodologies -- l12 Study of harmonics in linear, nonlinear nonsinusoidal electrical circuits by geometric algebra -- l13 Harmonic sources estimation in distribution systems 
588 |a Description based on online resource; title from digital title page (viewed on March 16, 2023). 
650 0 |a Electric power systems  |x Control. 
650 0 |a Machine learning. 
650 6 |a R�eseaux �electriques (�Energie)  |x R�egulation.  |0 (CaQQLa)201-0079523 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a Electric power systems  |x Control  |2 fast  |0 (OCoLC)fst00905538 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Espejo, Emilio Barocio,  |e editor. 
700 1 |a Sevilla, Felix Rafael Segundo,  |e editor. 
700 1 |a Korba, Petr,  |e editor. 
776 0 8 |i Print version:  |z 0323999042  |z 9780323999045  |w (OCoLC)1321786639 
776 0 8 |i Print version:  |t Monitoring and control of electrical power systems using machine learning techniques  |z 9780323999045  |w (OCoLC)1351696310 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323999045  |z Texto completo