Cargando…

Receptor endocytosis and signalling in health and disease. Part A /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2023.
Colección:Progress in molecular biology and translational science ; v. 194.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Receptor Endocytosis and Signalling in Health and Disease
  • Part A
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: An overview of receptor endocytosis and signaling
  • 1. Introduction
  • 2. Role of clathrin in endocytosis
  • 2.1. Clathrin-dependent endocytosis
  • 2.1.1. Role of dynamin in internalization of receptor
  • 2.2. Clathrin-independent endocytosis
  • 3. Role of adaptor protein in internalization of the receptor
  • 4. Subcellular trafficking
  • 5. Receptor trafficking in non-traditional subcellular organelles
  • 6. Role of short-sequence motif in the internalization and trafficking of the receptors
  • 7. Signaling
  • 8. Conclusions and future perspectives
  • Conflict of interest
  • Reference
  • Chapter Two: Emerging tools for studying receptor endocytosis and signaling
  • 1. Introduction
  • 2. Radioligand binding assay
  • 3. Western blot
  • 4. Co-immunoprecipitation and immunoblotting
  • 5. Northern blotting
  • 6. Real-time reverse transcription PCR (qRT PCR)
  • 7. Immunofluorescence and confocal microscopy
  • 8. MicroRNA/small interference RNA
  • 9. Bioassay
  • 10. Conclusion and future perspectives
  • Conflict of interest
  • References
  • Chapter Three: Mas receptor endocytosis and signaling in health and disease
  • 1. Introduction
  • 2. Gene structure and expression of MasR
  • 2.1. MasR signaling
  • 2.2. MasR heteromerization
  • 3. MasR trafficking
  • 4. MasR signaling and receptor trafficking in pathological situations
  • 4.1. Alzheimer�s disease
  • 4.2. Parkinson�s disease (PD)
  • 4.3. Anxiety disorders
  • 5. Concluding remarks
  • References
  • Chapter Four: Regulation of transferrin receptor trafficking by optineurin and its disease-associated mutants
  • 1. Introduction
  • 1.1. Trafficking of TFRC through early and recycling endosomes
  • 2. Role of OPTN in TFRC trafficking and recycling.
  • 3. Glaucoma-associated mutations of OPTN impair TFRC trafficking and recycling
  • 4. Function of OPTN in trafficking of TFRC and associated membrane to autophagosomes
  • 5. Unconventional endocytic trafficking of TFRC
  • 6. Concluding remarks
  • Acknowledgment
  • Author contributions
  • References
  • Chapter Five: The insulin receptor endocytosis
  • 1. Introduction
  • 2. Clathrin-mediated endocytosis of the insulin receptor
  • 2.1. Endocytosis motifs in insulin receptor
  • 2.2. Spindle checkpoint regulators in insulin receptor endocytosis
  • 2.3. Insulin receptor signaling pathways in insulin receptor endocytosis
  • 3. Caveolae-mediated IR endocytosis
  • 3.1. Caveolin and insulin signaling
  • 3.2. Caveolin-binding motifs in insulin receptor
  • 4. Dysfunction of insulin receptor endocytosis
  • 4.1. Animal model
  • 4.2. Obesity, diabetes, and insulin receptor endocytosis
  • 4.3. Insulin receptor endocytosis and gene expression
  • 5. Discussion
  • 6. Conclusion
  • References
  • Chapter Six: VEGFR endocytosis: Implications for angiogenesis
  • 1. Introduction
  • 2. Vascular endothelial growth factors and membrane receptors
  • 2.1. Vascular endothelial growth factors (VEGFs)
  • 2.2. VEGF receptors
  • 2.2.1. VEGFR1
  • 2.2.2. VEGFR2
  • 2.2.3. VEGFR3
  • 2.2.4. VEGF co-receptors
  • 3. VEGFR endocytosis
  • 3.1. Clathrin-dependent endocytosis (CDE)
  • 3.2. Clathrin-independent endocytosis (CIE)
  • 3.2.1. Macropinocytosis
  • 3.2.2. Caveolae, lipid rafts and endocytosis
  • 4. Integration of VEGFR signaling, trafficking and proteolysis
  • 5. VEGFR post-translational modifications
  • 5.1. Phosphorylation
  • 5.2. Ubiquitination
  • 5.3. Other PTMs
  • 6. Implications of VEGFR endocytosis in vascular physiology
  • 6.1. Cell motility and migration
  • 6.2. Cell proliferation and survival
  • 7. Conclusions
  • Acknowledgments
  • References.
  • Chapter Seven: Endocytosis and signaling of angiotensin II type 1 receptor
  • 1. Introduction
  • 2. Ligand-stimulated internalization of AT1 receptor
  • 3. Role of clathrin adaptor proteins in internalization of AT1R
  • 4. Subcellular trafficking of AT1 receptor
  • 5. Role of a short amino acid motif in the internalization and trafficking of AT1R
  • 6. Signaling of AT1 receptor
  • 7. Concluding remarks and future perspectives
  • Conflict of interest
  • References
  • Chapter Eight: B cell receptor (BCR) endocytosis
  • 1. Introduction to the B cell receptor
  • 2. B cell receptor structure
  • 3. B cell receptor signaling and regulation
  • 4. Mechanism of B cell receptor endocytosis
  • 5. Clathrin mediated endocytosis
  • 6. Clathrin independent endocytosis (CIE)
  • 6.1. Phagocytosis
  • 6.2. Other mechanisms of CIE
  • 6.3. Lipid rafts
  • 7. B cell receptor signaling and endocytosis in leukemia and lymphoma
  • 8. Chronic lymphocytic leukemia
  • 9. Diffuse large B cell lymphoma
  • 10. Conclusions
  • Acknowledgments
  • References
  • Chapter Nine: Multifunctional role of the ubiquitin proteasome pathway in phagocytosis
  • 1. Introduction
  • 1.1. A brief history of discovery of phagocytosis
  • 1.2. Phagocytosis: Multifarious pathways
  • 2. The phagocytes
  • 3. Distinct steps of phagocytosis
  • 3.1. Target particle recognition
  • 3.1.1. Fc receptor (FcR) signaling
  • 3.1.2. Complement receptor (CR) signaling
  • 3.2. Phagosome generation
  • 3.2.1. Binding of ligand or particles with receptors
  • 3.2.2. Phagocytic cup formation
  • 3.2.3. Closure of phagocytic cup
  • 3.3. Phagosome maturation
  • 3.3.1. Early phagosomes
  • 3.3.2. Intermediate phagosomes
  • 3.3.3. Late phagosomes and phagolysosomes
  • 4. Phagocytosis: Connection with endoplasmic reticulum (ER)
  • 5. Role of ubiquitin proteasome pathway (UPP) in phagocytosis.
  • 5.1. UPP in phagosome formation and maturation
  • 5.2. UPP in innate immunity and antigen cross presentation
  • 5.3. UPP in removal of apoptotic body and maintenance of tissue homeostasis
  • 5.4. UPP and marking of the phagocytic target
  • 5.5. UPP proteins with unknown roles in phagocytosis
  • 6. Aberrations of UPP in phagocytosis and human diseases
  • 7. Phagosomal machinery of parasites and role of UPP
  • 8. Future perspectives
  • Acknowledgments
  • References
  • Chapter Ten: Receptors of immune cells mediates recognition for tumors
  • 1. Introduction: Inflammation in tumor microenvironment and cancer
  • 2. Tumor initiation
  • 3. Tumor promotion
  • 4. Role of pattern recognition receptors (PRRs) in tumor progression
  • 5. Immune evasion and angiogenesis
  • 5.1. Immune evasion
  • 5.2. Angiogenesis
  • 6. Macrophages function in tumor recognition
  • 6.1. Macrophages in tumor-tissue resident macrophages
  • 6.2. Monocytes derived macrophages
  • 6.3. Macrophages recruitment to the tumor site
  • 6.4. Polarization of macrophages
  • 6.5. Macrophages based immunotherapies
  • 7. Lymphocytes driven immune surveillance
  • 7.1. T cell receptor (TCR) in tumor
  • 7.2. Structure of T cell receptor
  • 7.3. TCR-based immunotherapies/CAR therapies
  • 7.3.1. Chimeric antigen receptors (CARs) T cell therapy
  • 7.3.2. Adoptive cell transfer (ACT)
  • 7.3.3. Immune checkpoint inhibitors
  • 8. Role of B cell receptor in tumor
  • 8.1. BCR-based immunotherapies
  • 9. Natural killer (NK) cells and receptors
  • 9.1. NK cell receptor
  • 9.2. Role of natural killer group 2D (NKG2D)
  • 9.3. Natural cytotoxicity receptors
  • 9.4. NKp80 (KLRF1-killer cell lectin-like receptor subfamily F1)
  • 9.5. Signaling lymphocytic activation molecule (SLAM)-related receptors
  • 9.6. Adhesion molecules and DNA-1
  • 9.7. MHC associated NK cell inhibitory receptors
  • 9.8. NK cell-based therapy.