Cargando…

Mathematical methods in data science /

Mathematical Methods in Data Science covers a broad range of mathematical tools used in data science, including calculus, linear algebra, optimization, network analysis, probability and differential equations. Based on the authors' recently published and previously unpublished results, this boo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ren, Jingli (Autor), Wang, Haiyan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Cambridge, MA : Elsevier, [2023]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007i 4500
001 SCIDIR_on1357502790
003 OCoLC
005 20231120010720.0
006 m o d
007 cr cnu---unuuu
008 230120s2023 ne ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d YDX  |d OPELS  |d EBLCP  |d UKAHL  |d UKMGB  |d OCLCQ  |d FIE  |d N$T  |d OCLCQ  |d OCLCO 
015 |a GBC2K2151  |2 bnb 
016 7 |a 020802980  |2 Uk 
019 |a 1363837961 
020 |a 0443186804  |q electronic book 
020 |a 9780443186806  |q (electronic bk.) 
020 |z 0443186790 
020 |z 9780443186790 
035 |a (OCoLC)1357502790  |z (OCoLC)1363837961 
050 4 |a QA76.9.B45  |b R46 2023 
082 0 4 |a 005.7  |2 23/eng/20230217 
100 1 |a Ren, Jingli,  |e author. 
245 1 0 |a Mathematical methods in data science /  |c Jingli Ren, Haiyan Wang. 
264 1 |a Amsterdam ;  |a Cambridge, MA :  |b Elsevier,  |c [2023] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 |a Description based on online resource; title from digital title page (viewed on February 17, 2023). 
520 |a Mathematical Methods in Data Science covers a broad range of mathematical tools used in data science, including calculus, linear algebra, optimization, network analysis, probability and differential equations. Based on the authors' recently published and previously unpublished results, this book introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for dataanalysis and prediction. With data science being used in virtually every aspect of our society, the book includes examples and problems arising in data science and the clear explanation of advanced mathematical concepts, especially data-driven differential equations, making it accessible to researchers and graduate students in mathematics and data science. --  |c Provided by publisher. 
650 0 |a Big data  |x Mathematics. 
650 0 |a Big data  |x Mathematical models. 
650 6 |a Donn�ees volumineuses  |0 (CaQQLa)000284673  |x Math�ematiques.  |0 (CaQQLa)201-0380112 
650 6 |a Donn�ees volumineuses  |0 (CaQQLa)000284673  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
655 0 |a Electronic books. 
700 1 |a Wang, Haiyan,  |e author. 
776 0 8 |i Print version:  |z 9780443186806 
776 0 8 |i Print version:  |z 0443186790  |z 9780443186790  |w (OCoLC)1329423931 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780443186790  |z Texto completo