Microbiome in neurological disease /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press, an imprint of Elsevier
2022.
|
Edición: | First edition. |
Colección: | International review of neurobiology ;
v. 167. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Microbiome in Neurological Disease
- Copyright
- Contents
- Contributors
- Introduction: Unraveling the complex contributions of indigenous microbes to neurological health and disease
- We are not alone
- References
- Chapter One: Intersections of the microbiome and early neurodevelopment
- 1. Microbiota regulation of brain and behavior
- 2. Prenatal and early postnatal microbiota
- 2.1. Maternal intestinal microbiota
- 2.2. The vaginal microbiota
- 3. Impact of microbiota on neurodevelopment: Considerations of the developmental origins of health and disease
- 3.1. Maternal microbiota during pregnancy influences fetal development
- 3.2. Early postnatal microbiota influences fetal development
- 4. Potential mechanisms of microbiota influences on neurodevelopment
- 5. Future directions
- References
- Chapter Two: Microbiome influences on neuro-immune interactions in neurodegenerative disease
- 1. Introduction
- 2. Microbiome influences on microglia
- 3. Microbiome influences on astrocytes
- 4. Microbiome influences on other immune cells
- 5. Gut microbiome studies in human populations
- 6. Gut microbiome studies in model organisms of aging or neurological disease
- 7. Blood brain barrier (BBB)
- 8. Vagus nerve
- 9. Mediators of gut/brain crosstalk
- 9.1. Short chain fatty acids
- 9.2. Aryl hydrocarbon receptor (AHR) and AHR ligands
- 9.3. Lipopolysaccharide
- 9.4. Secondary bile acids
- 9.5. Neurotransmitters
- 10. Therapeutic potential of probiotics and prebiotics to treat neurodegenerative disease
- 11. Future challenges/directions
- Acknowledgments
- Conflict of interests
- References
- Chapter Three: The many genomes of Parkinson�s disease
- 1. Holistic view
- 1.1. Human holobiont
- 1.2. Complexities of PD
- 2. Hologenome
- 2.1. Human genome
- 2.2. Mitochondrial genome
- 2.3. Microbiome.
- 8.1. Sodium oligomannate
- 8.2. Dietary inulin
- 9. Microbial mediators associated with Alzheimer�s disease
- 9.1. Short-chain fatty acids (SCFAs)
- 9.2. Bile acids
- 9.3. Polysaccharides
- 9.4. Toxins
- 10. Potential use of probiotics for the treatment of AD
- 10.1. Probiotic interventions can improve memory in models of Alzheimer�s disease
- 10.2. Human trials of probiotics for Alzheimer�s disease
- References
- Chapter Six: The microbiota-gut-brain axis in Huntington�s disease
- 1. Microbiota-gut-brain axis
- 1.1. Gut microbiota development
- 1.2. Studying the gut microbiome
- 1.3. Bi-directional communication
- 1.4. Short-chain fatty acids and branched-chain fatty acids
- 2. Gut microbiota disruption
- 2.1. Targeting the gut microbiota
- 3. Huntington�s disease
- 3.1. HD history and prevalence
- 3.2. HD etiology
- 3.3. HD pathology
- 3.4. HD clinical presentation
- 3.5. HD mouse models
- 4. The gut microbiota in HD
- 5. Gut microbiota and HD motor symptoms
- 6. Gut microbiota and HD-induced weight loss
- 7. Gut microbiota and cognition in HD
- 8. Gut microbiota and immune function in HD
- 9. Microbiota-gut-brain axis in HD
- 9.1. Mucosal function
- 9.2. Enteric nervous system and vagal nerve communication
- 9.3. HPA axis
- 10. Gut microbiota and HD sexual dimorphism
- 11. Environment
- 12. Limitations
- 13. Conclusion
- References
- Chapter Seven: Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics
- 1. Microbiome associations studies in MS
- 2. Mechanisms of gut dysbiosis
- 2.1. Leaky gut and systemic inflammation
- 2.2. Modulation of the immune response by the gut microbiota
- 2.2.1. Suppression of the immunoregulatory response
- 2.2.2. Induction of a pro-inflammatory Th1/Th17 response by gut bacteria
- 3. Influence of diet on the pathobiology of MS.
- 4. Targeting gut bacteria to treat multiple sclerosis
- 4.1. Probiotic-based therapy to treat autoimmune diseases
- 4.2. Bacteria as drugs (BRUGS)
- 4.3. Prebiotics/diet-based therapy
- 5. Conclusions
- Acknowledgments
- Conflict of interest statement
- References
- Chapter Eight: Interactions between the gut microbiome and ketogenic diet in refractory epilepsy
- 1. Introduction to epilepsy
- 2. Increasing interest in the microbiome and epilepsy
- 3. Ketogenic diet and epilepsy
- 4. Ketogenic diet impact on epilepsy via gut microbiome
- 4.1. Ketogenic diet on the composition of the gut microbiota in epilepsy
- 4.2. Ketogenic diet on the function of the gut microbiome in epilepsy
- 4.3. Ketogenic diet on the gut microbiome in other diseases
- 5. Potential mechanisms for microbial interactions with the ketogenic diet
- 5.1. Microbial effects on host lipid biology
- 5.2. Microbiome responses to variations in dietary fat content and type
- 6. Conclusion
- References
- Chapter Nine: Traumatic spinal cord injury and the contributions of the post-injury microbiome
- 1. Introduction
- 2. Remodeling of the gut microbiome after SCI
- 3. Interactions between the gut microbiome and SCI-induced neurogenic bowel
- 4. SCI-triggered local and systemic immune responses
- 5. Contributions of the microbiome to SCI-associated inflammation in humans
- 6. Microbiome contributions to SCI-associated inflammation in experimental models
- 7. SCI microbiome association with gut permeability after injury
- 8. Microbiome manipulations with therapeutic potential for SCI recovery
- 8.1. Fecal microbiome transplants
- 8.2. Probiotic therapeutics
- 8.3. Selective antibiotic treatment
- 8.4. Beneficial microbiome-related metabolites
- 9. Looking broadly into the future at microbiome effects on SCI
- Acknowledgments
- References.