Cargando…

Microbiome in neurological disease /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sampson, Timothy R. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, an imprint of Elsevier 2022.
Edición:First edition.
Colección:International review of neurobiology ; v. 167.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Microbiome in Neurological Disease
  • Copyright
  • Contents
  • Contributors
  • Introduction: Unraveling the complex contributions of indigenous microbes to neurological health and disease
  • We are not alone
  • References
  • Chapter One: Intersections of the microbiome and early neurodevelopment
  • 1. Microbiota regulation of brain and behavior
  • 2. Prenatal and early postnatal microbiota
  • 2.1. Maternal intestinal microbiota
  • 2.2. The vaginal microbiota
  • 3. Impact of microbiota on neurodevelopment: Considerations of the developmental origins of health and disease
  • 3.1. Maternal microbiota during pregnancy influences fetal development
  • 3.2. Early postnatal microbiota influences fetal development
  • 4. Potential mechanisms of microbiota influences on neurodevelopment
  • 5. Future directions
  • References
  • Chapter Two: Microbiome influences on neuro-immune interactions in neurodegenerative disease
  • 1. Introduction
  • 2. Microbiome influences on microglia
  • 3. Microbiome influences on astrocytes
  • 4. Microbiome influences on other immune cells
  • 5. Gut microbiome studies in human populations
  • 6. Gut microbiome studies in model organisms of aging or neurological disease
  • 7. Blood brain barrier (BBB)
  • 8. Vagus nerve
  • 9. Mediators of gut/brain crosstalk
  • 9.1. Short chain fatty acids
  • 9.2. Aryl hydrocarbon receptor (AHR) and AHR ligands
  • 9.3. Lipopolysaccharide
  • 9.4. Secondary bile acids
  • 9.5. Neurotransmitters
  • 10. Therapeutic potential of probiotics and prebiotics to treat neurodegenerative disease
  • 11. Future challenges/directions
  • Acknowledgments
  • Conflict of interests
  • References
  • Chapter Three: The many genomes of Parkinson�s disease
  • 1. Holistic view
  • 1.1. Human holobiont
  • 1.2. Complexities of PD
  • 2. Hologenome
  • 2.1. Human genome
  • 2.2. Mitochondrial genome
  • 2.3. Microbiome.
  • 8.1. Sodium oligomannate
  • 8.2. Dietary inulin
  • 9. Microbial mediators associated with Alzheimer�s disease
  • 9.1. Short-chain fatty acids (SCFAs)
  • 9.2. Bile acids
  • 9.3. Polysaccharides
  • 9.4. Toxins
  • 10. Potential use of probiotics for the treatment of AD
  • 10.1. Probiotic interventions can improve memory in models of Alzheimer�s disease
  • 10.2. Human trials of probiotics for Alzheimer�s disease
  • References
  • Chapter Six: The microbiota-gut-brain axis in Huntington�s disease
  • 1. Microbiota-gut-brain axis
  • 1.1. Gut microbiota development
  • 1.2. Studying the gut microbiome
  • 1.3. Bi-directional communication
  • 1.4. Short-chain fatty acids and branched-chain fatty acids
  • 2. Gut microbiota disruption
  • 2.1. Targeting the gut microbiota
  • 3. Huntington�s disease
  • 3.1. HD history and prevalence
  • 3.2. HD etiology
  • 3.3. HD pathology
  • 3.4. HD clinical presentation
  • 3.5. HD mouse models
  • 4. The gut microbiota in HD
  • 5. Gut microbiota and HD motor symptoms
  • 6. Gut microbiota and HD-induced weight loss
  • 7. Gut microbiota and cognition in HD
  • 8. Gut microbiota and immune function in HD
  • 9. Microbiota-gut-brain axis in HD
  • 9.1. Mucosal function
  • 9.2. Enteric nervous system and vagal nerve communication
  • 9.3. HPA axis
  • 10. Gut microbiota and HD sexual dimorphism
  • 11. Environment
  • 12. Limitations
  • 13. Conclusion
  • References
  • Chapter Seven: Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics
  • 1. Microbiome associations studies in MS
  • 2. Mechanisms of gut dysbiosis
  • 2.1. Leaky gut and systemic inflammation
  • 2.2. Modulation of the immune response by the gut microbiota
  • 2.2.1. Suppression of the immunoregulatory response
  • 2.2.2. Induction of a pro-inflammatory Th1/Th17 response by gut bacteria
  • 3. Influence of diet on the pathobiology of MS.
  • 4. Targeting gut bacteria to treat multiple sclerosis
  • 4.1. Probiotic-based therapy to treat autoimmune diseases
  • 4.2. Bacteria as drugs (BRUGS)
  • 4.3. Prebiotics/diet-based therapy
  • 5. Conclusions
  • Acknowledgments
  • Conflict of interest statement
  • References
  • Chapter Eight: Interactions between the gut microbiome and ketogenic diet in refractory epilepsy
  • 1. Introduction to epilepsy
  • 2. Increasing interest in the microbiome and epilepsy
  • 3. Ketogenic diet and epilepsy
  • 4. Ketogenic diet impact on epilepsy via gut microbiome
  • 4.1. Ketogenic diet on the composition of the gut microbiota in epilepsy
  • 4.2. Ketogenic diet on the function of the gut microbiome in epilepsy
  • 4.3. Ketogenic diet on the gut microbiome in other diseases
  • 5. Potential mechanisms for microbial interactions with the ketogenic diet
  • 5.1. Microbial effects on host lipid biology
  • 5.2. Microbiome responses to variations in dietary fat content and type
  • 6. Conclusion
  • References
  • Chapter Nine: Traumatic spinal cord injury and the contributions of the post-injury microbiome
  • 1. Introduction
  • 2. Remodeling of the gut microbiome after SCI
  • 3. Interactions between the gut microbiome and SCI-induced neurogenic bowel
  • 4. SCI-triggered local and systemic immune responses
  • 5. Contributions of the microbiome to SCI-associated inflammation in humans
  • 6. Microbiome contributions to SCI-associated inflammation in experimental models
  • 7. SCI microbiome association with gut permeability after injury
  • 8. Microbiome manipulations with therapeutic potential for SCI recovery
  • 8.1. Fecal microbiome transplants
  • 8.2. Probiotic therapeutics
  • 8.3. Selective antibiotic treatment
  • 8.4. Beneficial microbiome-related metabolites
  • 9. Looking broadly into the future at microbiome effects on SCI
  • Acknowledgments
  • References.