|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1351729494 |
003 |
OCoLC |
005 |
20231120010713.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
221127s2022 xx o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d OPELS
|d GW5XE
|d UKAHL
|d SFB
|d OCLCF
|d UKMGB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC2G4339
|2 bnb
|
016 |
7 |
|
|a 020746259
|2 Uk
|
019 |
|
|
|a 1351731247
|
020 |
|
|
|a 9780323986052
|q (electronic bk.)
|
020 |
|
|
|a 0323986056
|q (electronic bk.)
|
020 |
|
|
|z 9780323985956
|
020 |
|
|
|z 0323985955
|
035 |
|
|
|a (OCoLC)1351729494
|z (OCoLC)1351731247
|
050 |
|
4 |
|a RM301.25
|
082 |
0 |
4 |
|a 615.1900113
|2 23
|
245 |
0 |
0 |
|a Virtual screening and drug docking /
|c Edited by Julio Caballero.
|
260 |
|
|
|a [S.l.] :
|b Academic Press,
|c 2022.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
490 |
1 |
|
|a Annual reports in medicinal chemistry ;
|v v. 59
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Virtual Screening and Drug Docking -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Can docking scoring functions guarantee success in virtual screening? -- 1. Introduction -- 2. Scoring functions -- 3. Classifications of the scoring functions -- 3.1. Classical scoring functions -- 3.1.1. Force field/physics-based scoring functions -- 3.1.2. Empirical scoring functions -- 3.1.3. Knowledge-based scoring functions -- 3.2. Machine learning scoring functions -- 4. Strengths and weaknesses of classical scoring functions -- 5. Comparative studies of scoring functions -- 6. Strategies to improve the performance of scoring functions in virtual screening -- 7. How to choose a scoring function for virtual screening? -- 8. Future perspectives in scoring functions -- 9. Conclusions -- References -- Chapter Two: No dance, no partner! A tale of receptor flexibility in docking and virtual screening -- 1. Introduction -- 2. Theoretical framework -- 3. In silico methods to account for flexibility in molecular recognition -- 3.1. Molecular docking -- 3.2. MD-based methods for studying ligand-binding events -- 3.3. Machine learning methods to address protein flexibility -- 4. Conclusions and perspectives -- References -- Chapter Three: Using filters in virtual screening: A comprehensive guide to minimize errors and maximize efficiency -- 1. Introduction -- 2. Chemical space and ligand libraries -- 3. Types of databases for virtual screening -- 4. Ligand library design and selection -- 5. Constructing 3D structures-Ligand preparation -- 6. Druglikeness vs leadlikeness -- 6.1. Drug-like rules (Lipinski, Ghose, Egan, Muegge, Veber) -- 6.2. Quantitative estimate of druglikeness (QED) -- 6.3. Lead-like rules (Oprea) -- 7. Promiscuous inhibitors and frequent hitters -- 7.1. PAINS -- 7.2. Aggregators -- 7.3. Reactive and toxic functionalities.
|
505 |
8 |
|
|a 8. Knowledge-based filters -- 9. Pre and post VS tools -- 10. Machine learning and future directions -- References -- Chapter Four: Rational computational approaches to predict novel drug candidates against leishmaniasis -- 1. Introduction -- 2. Target-based approaches -- 2.1. Screening of compounds against Leishmania protein targets using a hybrid MD/docking approach -- 2.2. Implementation of a machine learning approach to classify druggable kinases in different Leishmania species -- 2.3. Repositioning of known drugs based on molecular homologue targets in different Leishmania species -- 3. Ligand-based approaches -- 3.1. Prediction of different types of toxicity for drug-like molecular candidates -- 3.2. Prediction of new drug purposes by ligand-based off-target activity predictions -- 4. Pharmacokinetics simulation -- 4.1. Population pharmacokinetics simulations of known drugs with potential anti-Leishmania activity -- 5. Conclusion -- Acknowledgments -- References -- Chapter Five: Virtual screening against Mycobacterium tuberculosis DNA gyrase: Applications and success stories -- 1. Introduction -- 2. The Mtb gyrase heterotetramer: Unique catalysis -- 2.1. Sites of Mtb gyrase inhibition -- 2.2. Resisting resistance: When gyrase goes rogue -- 3. Virtual screening in anti-TB drug discovery -- 4. Structure-guided virtual screening -- 4.1. Receptor-based pharmacophore modeling and lead optimization against GyrB -- 4.1.1. From an aminopyrazinamide-bound receptor -- 4.1.2. Pharmacophore modeling and validation -- 4.1.3. Pharmacophore model- and docking-based virtual screening -- 4.1.4. In vitro validation -- 4.1.5. Lead expansion -- 4.2. Receptor-based pharmacophore modeling and lead optimization against GyrB -- 4.2.1. From a pyrrolamide inhibitor-bound receptor -- 4.2.2. Pharmacophore- and docking-based virtual screening -- 4.2.3. In vitro validation.
|
505 |
8 |
|
|a 4.2.4. Lead optimization -- 4.3. Consensus docking and lead optimization: GyrB inhibitor discovery -- 4.3.1. Docking-based virtual screening and in vitro validation -- 4.3.2. Lead optimization -- 5. Ligand-based virtual screening -- 6. Applications of molecular docking: Designing NBTIs -- 6.1. Benzimidazole scaffold morphing -- 6.2. LHS substitutions of NBTIs -- 7. Docking-based identification of non-fluoroquinolone inhibitors of GyrA -- 8. Conclusion -- References.
|
650 |
|
0 |
|a Drug development
|x Computer simulation.
|
650 |
|
0 |
|a Drugs
|x Structure-activity relationships
|x Computer simulation.
|
650 |
|
6 |
|a M�edicaments
|0 (CaQQLa)201-0306620
|x D�eveloppement
|0 (CaQQLa)201-0306620
|x Simulation par ordinateur.
|0 (CaQQLa)201-0379159
|
650 |
|
6 |
|a M�edicaments
|0 (CaQQLa)201-0028672
|x Relations structure-activit�e
|0 (CaQQLa)201-0028672
|x Simulation par ordinateur.
|0 (CaQQLa)201-0379159
|
650 |
|
7 |
|a Drugs
|x Structure-activity relationships
|x Computer simulation
|2 fast
|0 (OCoLC)fst00898930
|
700 |
1 |
|
|a Caballero, Julio.
|
776 |
0 |
8 |
|i ebook version :
|z 9780323986052
|
776 |
0 |
8 |
|c Original
|z 0323985955
|z 9780323985956
|w (OCoLC)1309866895
|
776 |
0 |
8 |
|i Print version:
|t VIRTUAL SCREENING AND DRUG DOCKING.
|d [S.l.] : ELSEVIER ACADEMIC PRESS, 2022
|z 0323985955
|w (OCoLC)1309866895
|
830 |
|
0 |
|a Annual reports in medicinal chemistry ;
|v v. 59.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00657743/59
|z Texto completo
|