Cargando…

Virtual screening and drug docking /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Caballero, Julio
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : Academic Press, 2022.
Colección:Annual reports in medicinal chemistry ; v. 59.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1351729494
003 OCoLC
005 20231120010713.0
006 m o d
007 cr |n|||||||||
008 221127s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d GW5XE  |d UKAHL  |d SFB  |d OCLCF  |d UKMGB  |d OCLCQ  |d OCLCO 
015 |a GBC2G4339  |2 bnb 
016 7 |a 020746259  |2 Uk 
019 |a 1351731247 
020 |a 9780323986052  |q (electronic bk.) 
020 |a 0323986056  |q (electronic bk.) 
020 |z 9780323985956 
020 |z 0323985955 
035 |a (OCoLC)1351729494  |z (OCoLC)1351731247 
050 4 |a RM301.25 
082 0 4 |a 615.1900113  |2 23 
245 0 0 |a Virtual screening and drug docking /  |c Edited by Julio Caballero. 
260 |a [S.l.] :  |b Academic Press,  |c 2022. 
300 |a 1 online resource. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a Annual reports in medicinal chemistry ;  |v v. 59 
588 0 |a Print version record. 
505 0 |a Intro -- Virtual Screening and Drug Docking -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Can docking scoring functions guarantee success in virtual screening? -- 1. Introduction -- 2. Scoring functions -- 3. Classifications of the scoring functions -- 3.1. Classical scoring functions -- 3.1.1. Force field/physics-based scoring functions -- 3.1.2. Empirical scoring functions -- 3.1.3. Knowledge-based scoring functions -- 3.2. Machine learning scoring functions -- 4. Strengths and weaknesses of classical scoring functions -- 5. Comparative studies of scoring functions -- 6. Strategies to improve the performance of scoring functions in virtual screening -- 7. How to choose a scoring function for virtual screening? -- 8. Future perspectives in scoring functions -- 9. Conclusions -- References -- Chapter Two: No dance, no partner! A tale of receptor flexibility in docking and virtual screening -- 1. Introduction -- 2. Theoretical framework -- 3. In silico methods to account for flexibility in molecular recognition -- 3.1. Molecular docking -- 3.2. MD-based methods for studying ligand-binding events -- 3.3. Machine learning methods to address protein flexibility -- 4. Conclusions and perspectives -- References -- Chapter Three: Using filters in virtual screening: A comprehensive guide to minimize errors and maximize efficiency -- 1. Introduction -- 2. Chemical space and ligand libraries -- 3. Types of databases for virtual screening -- 4. Ligand library design and selection -- 5. Constructing 3D structures-Ligand preparation -- 6. Druglikeness vs leadlikeness -- 6.1. Drug-like rules (Lipinski, Ghose, Egan, Muegge, Veber) -- 6.2. Quantitative estimate of druglikeness (QED) -- 6.3. Lead-like rules (Oprea) -- 7. Promiscuous inhibitors and frequent hitters -- 7.1. PAINS -- 7.2. Aggregators -- 7.3. Reactive and toxic functionalities. 
505 8 |a 8. Knowledge-based filters -- 9. Pre and post VS tools -- 10. Machine learning and future directions -- References -- Chapter Four: Rational computational approaches to predict novel drug candidates against leishmaniasis -- 1. Introduction -- 2. Target-based approaches -- 2.1. Screening of compounds against Leishmania protein targets using a hybrid MD/docking approach -- 2.2. Implementation of a machine learning approach to classify druggable kinases in different Leishmania species -- 2.3. Repositioning of known drugs based on molecular homologue targets in different Leishmania species -- 3. Ligand-based approaches -- 3.1. Prediction of different types of toxicity for drug-like molecular candidates -- 3.2. Prediction of new drug purposes by ligand-based off-target activity predictions -- 4. Pharmacokinetics simulation -- 4.1. Population pharmacokinetics simulations of known drugs with potential anti-Leishmania activity -- 5. Conclusion -- Acknowledgments -- References -- Chapter Five: Virtual screening against Mycobacterium tuberculosis DNA gyrase: Applications and success stories -- 1. Introduction -- 2. The Mtb gyrase heterotetramer: Unique catalysis -- 2.1. Sites of Mtb gyrase inhibition -- 2.2. Resisting resistance: When gyrase goes rogue -- 3. Virtual screening in anti-TB drug discovery -- 4. Structure-guided virtual screening -- 4.1. Receptor-based pharmacophore modeling and lead optimization against GyrB -- 4.1.1. From an aminopyrazinamide-bound receptor -- 4.1.2. Pharmacophore modeling and validation -- 4.1.3. Pharmacophore model- and docking-based virtual screening -- 4.1.4. In vitro validation -- 4.1.5. Lead expansion -- 4.2. Receptor-based pharmacophore modeling and lead optimization against GyrB -- 4.2.1. From a pyrrolamide inhibitor-bound receptor -- 4.2.2. Pharmacophore- and docking-based virtual screening -- 4.2.3. In vitro validation. 
505 8 |a 4.2.4. Lead optimization -- 4.3. Consensus docking and lead optimization: GyrB inhibitor discovery -- 4.3.1. Docking-based virtual screening and in vitro validation -- 4.3.2. Lead optimization -- 5. Ligand-based virtual screening -- 6. Applications of molecular docking: Designing NBTIs -- 6.1. Benzimidazole scaffold morphing -- 6.2. LHS substitutions of NBTIs -- 7. Docking-based identification of non-fluoroquinolone inhibitors of GyrA -- 8. Conclusion -- References. 
650 0 |a Drug development  |x Computer simulation. 
650 0 |a Drugs  |x Structure-activity relationships  |x Computer simulation. 
650 6 |a M�edicaments  |0 (CaQQLa)201-0306620  |x D�eveloppement  |0 (CaQQLa)201-0306620  |x Simulation par ordinateur.  |0 (CaQQLa)201-0379159 
650 6 |a M�edicaments  |0 (CaQQLa)201-0028672  |x Relations structure-activit�e  |0 (CaQQLa)201-0028672  |x Simulation par ordinateur.  |0 (CaQQLa)201-0379159 
650 7 |a Drugs  |x Structure-activity relationships  |x Computer simulation  |2 fast  |0 (OCoLC)fst00898930 
700 1 |a Caballero, Julio. 
776 0 8 |i ebook version :  |z 9780323986052 
776 0 8 |c Original  |z 0323985955  |z 9780323985956  |w (OCoLC)1309866895 
776 0 8 |i Print version:  |t VIRTUAL SCREENING AND DRUG DOCKING.  |d [S.l.] : ELSEVIER ACADEMIC PRESS, 2022  |z 0323985955  |w (OCoLC)1309866895 
830 0 |a Annual reports in medicinal chemistry ;  |v v. 59. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00657743/59  |z Texto completo