Water resource modeling and computational technologies /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2022.
|
Colección: | Current directions in water scarcity research ;
v. 7. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Water Resource Modeling and Computational Technologies
- Copyright
- Contents
- Contributors
- About the editors
- Foreword
- Preface
- Acknowledgments
- Section I: Introduction
- Chapter 1: Artificial intelligence and machine learning in water resources engineering
- 1. Introduction
- 2. Materials and methods
- 2.1. Selection of search terms
- 2.2. Scientometric review
- 3. Evolution of artificial intelligence and machine learning
- 4. Results and discussion
- 5. Conclusion
- References
- Section II: Application of artificial intelligence to water resources
- Chapter 2: Demystifying artificial intelligence amidst sustainable agricultural water management
- 1. Introduction
- 1.1. Review objectives and chapter organization
- 2. AI in agriculture
- 2.1. AI in preagricultural (preparatory) activities
- 2.1.1. Case studies: ``Agri-e-calculator and sowing app��
- 2.2. AI during agricultural activities
- 2.3. AI in postagricultural activities
- 3. Current and future scope in AI for agriculture
- 4. Challenges of AI in agriculture
- 5. Conclusions
- Acknowledgments
- Conflict of interest
- References
- Further reading
- Chapter 3: Bidirectional long short-term memory-based empirical wavelet transform: A new hybrid artificial
- 1. Introduction
- 2. Materials and methods
- 2.1. Study site and data used
- 2.2. Performance assessment of the models
- 2.3. Methodology
- 2.3.1. Bidirectional long short term memory (BiLSTM)
- 2.3.2. Gaussian process regression (GPR)
- 2.3.3. Support vector regression (SVR)
- 2.3.4. Empirical wavelet transform (EWT)
- 3. Results and discussion
- 4. Conclusions
- 5. Recommendations
- References
- Chapter 4: Fuzzy logic modeling of groundwater potential in Marinduque, Philippines
- 1. Introduction
- 2. Material and methods
- 2.1. Study site
- 2.2. Data
- 2.3. Groundwater potential mapping using fuzzy logic
- 2.3.1. Identification of membership function
- 2.3.2. Determination of aggregation function
- 2.3.3. Calculation of the performance metrics of the fuzzy aggregation functions
- 3. Results
- 4. Discussion
- 5. Conclusion
- References
- Chapter 5: Soft-computing approach to scour depth prediction under wall jets
- 1. Introduction
- 2. Materials and methods
- 2.1. Effect of various parameters on equilibrium depth of scour
- 2.2. Existing prediction equations for maximum scour depth
- 3. Results and discussion
- 3.1. Statistical error analysis
- 3.2. Artificial neural network (ANN) model
- 3.3. Adaptive neuro-fuzzy interference system (ANFIS) model
- 4. Conclusions
- References
- Section III: Image processing applications in water resources
- Chapter 6: Assessment of water resources using remote sensing and GIS techniques
- 1. Introduction
- 2. Remote sensing and GIS: Tools for sustainability of water resources