Cargando…

Machine learning and pattern recognition methods in chemistry from multivariate and data driven modeling /

Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling outlines key knowledge in this area, combining critical introductory approaches with the latest advanced techniques. Beginning with an introduction of univariate and multivariate statistical anal...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ghasemi, Jahan B. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007i 4500
001 SCIDIR_on1348488006
003 OCoLC
005 20231120010709.0
006 m o d
007 cr cnu---unuuu
008 221029s2022 ne o ||| 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d YDX  |d UKMGB  |d OCLCF  |d OCLCQ  |d OPELS  |d UKAHL  |d N$T  |d OCLCO 
015 |a GBC2G0315  |2 bnb 
016 7 |a 020739508  |2 Uk 
019 |a 1352057535 
020 |a 0323907067  |q electronic book 
020 |a 9780323904087  |q (electronic bk.) 
020 |a 0323904084  |q (electronic bk.) 
020 |a 9780323907064  |q (electronic bk.) 
035 |a (OCoLC)1348488006  |z (OCoLC)1352057535 
050 4 |a QD39.3.E46  |b G43 2022 
082 0 4 |a 540.285631  |2 23/eng/20221208 
100 1 |a Ghasemi, Jahan B. 
245 0 0 |a Machine learning and pattern recognition methods in chemistry from multivariate and data driven modeling /  |c edited by Jahan B. Ghasemi. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2022. 
300 |a 1 online resource (212 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Soft constraints in curve resolution problems -- 1. Introduction -- 2. Basic concepts and theory -- 2.1. Penalty alternating least-squares (P-ALS) algorithm -- 2.2. Multi-way penalty alternating least-squares (P-ALS) algorithm -- 2.3. Grid search algorithm for applying soft constraints -- 3. Applications -- 4. Conclusions -- References -- Chapter 2: Multivariate predictive modeling and validation -- 1. Regression 
505 8 |a 1.1. Multiple linear regression (MLR) -- 1.2. Principal component regression (PCR) -- 1.3. Partial least-squares regression (PLS) -- 1.3.1. PLS for a single response (PLS-1) -- 1.3.2. PLS for a multivariate response (PLS-2) -- 1.4. Other regression techniques -- 2. Classification -- 2.1. Linear discriminant analysis (LDA) -- 2.2. Partial least-squares discriminant analysis (PLS-DA) -- 2.3. Soft independent modeling of class analogies (SIMCA) -- 3. Validation -- References -- Chapter 3: Multivariate pattern recognition by machine learning methods -- 1. Introduction -- 2. Feature extraction 
505 8 |a 3. Task prediction -- 3.1. Classic approaches -- 3.2. Regression -- 3.3. Classification -- 3.4. Logistic regression -- 3.5. SVM -- 3.6. Random forest -- 3.7. Deep learning-based models -- 3.8. Classic neural network -- 3.9. Convolutional neural network -- 4. Conclusion -- 4.1. Advanced topics -- References -- Chapter 4: Tuning the apparent thermodynamic parameters of chemical systems -- 1. Introduction -- 2. General strategy for tuning the apparent constant (Karimvand, Maeder, & Abdollahi, 2019) -- 3. The application of proposed strategy in practice -- 3.1. Case study 1 
505 8 |a 3.2. Case study 2: Analysis of experimental data (Rasouli, Maeder, & Abdollahi, 2021) -- References -- Chapter 5: The analytical/measurement sources of multivariate errors. A case study: Detecting microplastics in sand -- 1. Introduction -- 1.1. Adding ``microplastics�� to the dictionary -- 1.2. Persistent, ubiquitous-And miscounted? -- 1.3. Hyperspectral imaging as a method for microplastics detection -- 1.4. Chemometrics -- 1.5. Principal component analysis -- 1.6. Classification -- 1.6.1. SIMCA -- 1.6.2. PLS-DA -- 1.6.3. Validation -- 1.7. Objectives of this book chapter 
505 8 |a 2. Materials and methods -- 2.1. Acrylonitrile butadiene styrene (ABS) pellet -- 2.2. Sample preparation -- 2.3. Near infrared hyperspectral imaging -- 2.4. Data analysis and software -- 3. Results and discussion -- 3.1. Raman microscopy -- 3.2. NIR-HSI spectra -- 3.3. Exploratory chemometric techniques: PCA -- 3.4. Classification -- 3.5. SIMCA -- 3.6. PLS-DA -- 4. Spectral insights on the problem -- 5. Future work -- Acknowledgments -- References -- Chapter 6: Autoencoders in generative modeling, feature extraction, regression, and classification -- 1. What is an autoencoder? 
500 |a 1.1. Undercomplete autoencoders 
520 |a Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling outlines key knowledge in this area, combining critical introductory approaches with the latest advanced techniques. Beginning with an introduction of univariate and multivariate statistical analysis, the book then explores multivariate calibration and validation methods. Soft modeling in chemical data analysis, hyperspectral data analysis, and autoencoder applications in analytical chemistry are then discussed, providing useful examples of the techniques in chemistry applications. Drawing on the knowledge of a global team of researchers, this book will be a helpful guide for chemists interested in developing their skills in multivariate data and error analysis. 
650 0 |a Chemistry  |x Data processing. 
650 0 |a Machine learning. 
650 0 |a Pattern recognition systems. 
650 0 |a Multivariate analysis. 
650 6 |a Chimio-informatique.  |0 (CaQQLa)201-0422426 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 6 |a Reconnaissance des formes (Informatique)  |0 (CaQQLa)201-0028094 
650 6 |a Analyse multivari�ee.  |0 (CaQQLa)201-0002611 
650 7 |a Chemistry  |x Data processing  |2 fast  |0 (OCoLC)fst00853366 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Multivariate analysis  |2 fast  |0 (OCoLC)fst01029105 
650 7 |a Pattern recognition systems  |2 fast  |0 (OCoLC)fst01055266 
700 1 |a Ghasemi, Jahan B.,  |e editor. 
776 0 8 |i Print version:  |a Ghasemi, Jahan B.  |t Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling  |d San Diego : Elsevier,c2022  |z 9780323904087 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323904087  |z Texto completo