|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
SCIDIR_on1348488006 |
003 |
OCoLC |
005 |
20231120010709.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
221029s2022 ne o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|c EBLCP
|d YDX
|d UKMGB
|d OCLCF
|d OCLCQ
|d OPELS
|d UKAHL
|d N$T
|d OCLCO
|
015 |
|
|
|a GBC2G0315
|2 bnb
|
016 |
7 |
|
|a 020739508
|2 Uk
|
019 |
|
|
|a 1352057535
|
020 |
|
|
|a 0323907067
|q electronic book
|
020 |
|
|
|a 9780323904087
|q (electronic bk.)
|
020 |
|
|
|a 0323904084
|q (electronic bk.)
|
020 |
|
|
|a 9780323907064
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)1348488006
|z (OCoLC)1352057535
|
050 |
|
4 |
|a QD39.3.E46
|b G43 2022
|
082 |
0 |
4 |
|a 540.285631
|2 23/eng/20221208
|
100 |
1 |
|
|a Ghasemi, Jahan B.
|
245 |
0 |
0 |
|a Machine learning and pattern recognition methods in chemistry from multivariate and data driven modeling /
|c edited by Jahan B. Ghasemi.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c 2022.
|
300 |
|
|
|a 1 online resource (212 p.)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Soft constraints in curve resolution problems -- 1. Introduction -- 2. Basic concepts and theory -- 2.1. Penalty alternating least-squares (P-ALS) algorithm -- 2.2. Multi-way penalty alternating least-squares (P-ALS) algorithm -- 2.3. Grid search algorithm for applying soft constraints -- 3. Applications -- 4. Conclusions -- References -- Chapter 2: Multivariate predictive modeling and validation -- 1. Regression
|
505 |
8 |
|
|a 1.1. Multiple linear regression (MLR) -- 1.2. Principal component regression (PCR) -- 1.3. Partial least-squares regression (PLS) -- 1.3.1. PLS for a single response (PLS-1) -- 1.3.2. PLS for a multivariate response (PLS-2) -- 1.4. Other regression techniques -- 2. Classification -- 2.1. Linear discriminant analysis (LDA) -- 2.2. Partial least-squares discriminant analysis (PLS-DA) -- 2.3. Soft independent modeling of class analogies (SIMCA) -- 3. Validation -- References -- Chapter 3: Multivariate pattern recognition by machine learning methods -- 1. Introduction -- 2. Feature extraction
|
505 |
8 |
|
|a 3. Task prediction -- 3.1. Classic approaches -- 3.2. Regression -- 3.3. Classification -- 3.4. Logistic regression -- 3.5. SVM -- 3.6. Random forest -- 3.7. Deep learning-based models -- 3.8. Classic neural network -- 3.9. Convolutional neural network -- 4. Conclusion -- 4.1. Advanced topics -- References -- Chapter 4: Tuning the apparent thermodynamic parameters of chemical systems -- 1. Introduction -- 2. General strategy for tuning the apparent constant (Karimvand, Maeder, & Abdollahi, 2019) -- 3. The application of proposed strategy in practice -- 3.1. Case study 1
|
505 |
8 |
|
|a 3.2. Case study 2: Analysis of experimental data (Rasouli, Maeder, & Abdollahi, 2021) -- References -- Chapter 5: The analytical/measurement sources of multivariate errors. A case study: Detecting microplastics in sand -- 1. Introduction -- 1.1. Adding ``microplastics�� to the dictionary -- 1.2. Persistent, ubiquitous-And miscounted? -- 1.3. Hyperspectral imaging as a method for microplastics detection -- 1.4. Chemometrics -- 1.5. Principal component analysis -- 1.6. Classification -- 1.6.1. SIMCA -- 1.6.2. PLS-DA -- 1.6.3. Validation -- 1.7. Objectives of this book chapter
|
505 |
8 |
|
|a 2. Materials and methods -- 2.1. Acrylonitrile butadiene styrene (ABS) pellet -- 2.2. Sample preparation -- 2.3. Near infrared hyperspectral imaging -- 2.4. Data analysis and software -- 3. Results and discussion -- 3.1. Raman microscopy -- 3.2. NIR-HSI spectra -- 3.3. Exploratory chemometric techniques: PCA -- 3.4. Classification -- 3.5. SIMCA -- 3.6. PLS-DA -- 4. Spectral insights on the problem -- 5. Future work -- Acknowledgments -- References -- Chapter 6: Autoencoders in generative modeling, feature extraction, regression, and classification -- 1. What is an autoencoder?
|
500 |
|
|
|a 1.1. Undercomplete autoencoders
|
520 |
|
|
|a Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling outlines key knowledge in this area, combining critical introductory approaches with the latest advanced techniques. Beginning with an introduction of univariate and multivariate statistical analysis, the book then explores multivariate calibration and validation methods. Soft modeling in chemical data analysis, hyperspectral data analysis, and autoencoder applications in analytical chemistry are then discussed, providing useful examples of the techniques in chemistry applications. Drawing on the knowledge of a global team of researchers, this book will be a helpful guide for chemists interested in developing their skills in multivariate data and error analysis.
|
650 |
|
0 |
|a Chemistry
|x Data processing.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
|
0 |
|a Multivariate analysis.
|
650 |
|
6 |
|a Chimio-informatique.
|0 (CaQQLa)201-0422426
|
650 |
|
6 |
|a Apprentissage automatique.
|0 (CaQQLa)201-0131435
|
650 |
|
6 |
|a Reconnaissance des formes (Informatique)
|0 (CaQQLa)201-0028094
|
650 |
|
6 |
|a Analyse multivari�ee.
|0 (CaQQLa)201-0002611
|
650 |
|
7 |
|a Chemistry
|x Data processing
|2 fast
|0 (OCoLC)fst00853366
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Multivariate analysis
|2 fast
|0 (OCoLC)fst01029105
|
650 |
|
7 |
|a Pattern recognition systems
|2 fast
|0 (OCoLC)fst01055266
|
700 |
1 |
|
|a Ghasemi, Jahan B.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a Ghasemi, Jahan B.
|t Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling
|d San Diego : Elsevier,c2022
|z 9780323904087
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323904087
|z Texto completo
|