Injection mold design engineering /
Clasificación: | TP1150 |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Munich :
Hanser,
[2022]
|
Edición: | 3rd edition. |
Temas: |
Tabla de Contenidos:
- Intro
- Preface
- Contents
- Nomenclature
- 1 Introduction
- 1.1 Overview of the Injection Molding Process
- 1.2 Mold Functions
- 1.3 Mold Structures
- 1.3.1 External View of Mold
- 1.3.2 View of Mold during Part Ejection
- 1.3.3 Mold Cross-Section and Function
- 1.4 Other Common Mold Types
- 1.4.1 Three-Plate, Multicavity Family Mold
- 1.4.2 Hot Runner, Multigated, Single-Cavity Mold
- 1.4.3 Comparison
- 1.5 The Mold Development Process
- 1.6 Mold Standards
- 1.7 Chapter Review
- 2 Plastic Part Design
- 2.1 The Product Development Process
- 2.1.1 Product Definition
- 2.1.2 Product Design
- 2.1.3 Development
- 2.1.4 Scale-Up and Launch
- 2.1.5 Role of Mold Design in Manufacturing Strategy
- 2.2 Prototyping Strategy
- 2.2.1 3D Printing by Material Extrusion (Fused Deposition Modeling)
- 2.2.2 3D Printing by Selective Laser Sintering
- 2.2.3 3D Printing by Stereolithography, Digital Light Processing, and Continuous Liquid Interface Production
- 2.2.4 3D Printing by PolyJet and Multi Jet Fusion
- 2.3 Design Requirements
- 2.3.1 Application Engineering Information
- 2.3.2 Computer-Aided Engineering (CAE)
- 2.3.3 Production Planning
- 2.3.4 End-Use Requirements
- 2.3.5 Design for Manufacturing and Assembly
- 2.3.6 Plastic Material Properties
- 2.4 Design for Injection Molding
- 2.4.1 Uniform Wall Thickness
- 2.4.2 Rib Design
- 2.4.3 Boss Design
- 2.4.4 Corner Design
- 2.4.5 Surface Finish and Textures
- 2.4.6 Draft
- 2.4.7 Undercuts
- 2.5 Sustainability
- 2.6 Chapter Review
- 3 Mold Procurement
- 3.1 Overview
- 3.2 The Procurement Process
- 3.3 Molded Part Cost Estimation
- 3.3.1 Mold Cost per Part
- 3.3.2 Material Cost per Part
- 3.3.3 Processing Cost per Part
- 3.3.4 Defect Cost per Part
- 3.4 Mold Cost Estimation
- 3.4.1 Mold Base Cost Estimation
- 3.4.2 Cavity Cost Estimation.
- 3.4.2.1 Insert Cost Estimation
- 3.4.2.2 Inserts Discount Factor
- 3.4.2.3 Insert Cost Machining Factors
- 3.4.2.4 Insert Cost Finishing Factors
- 3.4.3 Mold Customization
- 3.5 Rapid and Additive Manufacturing
- 3.5.1 Common Additively Manufactured Materials
- 3.5.2 Additive Manufacturing Process Performance Metrics
- 3.5.3 Design for Additive Manufacturing Guidelines
- 3.5.4 Preferred Workflow and File Formats
- 3.6 Mold Selection by Breakeven Analysis
- 3.7 Chapter Review
- 4 Mold Layout Design
- 4.1 Parting Plane Design
- 4.1.1 Determine Mold Opening Direction
- 4.1.2 Determine Parting Line
- 4.1.3 Parting Plane
- 4.1.4 Shut-Offs
- 4.2 Cavity and Core Insert Creation
- 4.2.1 Height Dimension
- 4.2.2 Length and Width Dimensions
- 4.2.3 Adjustments
- 4.3 Mold Base Selection
- 4.3.1 Cavity Layouts
- 4.3.2 Mold Base Sizing
- 4.3.3 Molding Machine Compatibility
- 4.3.4 Mold Base Suppliers
- 4.4 Material Selection
- 4.4.1 Strength vs. Heat Transfer
- 4.4.2 Hardness vs. Machinability
- 4.4.3 Material Summary
- 4.4.4 Surface Treatments
- 4.5 Chapter Review
- 5 Cavity Filling Analysis and Design
- 5.1 Overview
- 5.2 Objectives in Cavity Filling
- 5.2.1 Complete Filling of Mold Cavities
- 5.2.2 Avoid Uneven Filling or Over-Packing
- 5.2.3 Control the Melt Flow
- 5.3 Viscous Flow
- 5.3.1 Shear Stress, Shear Rate, and Viscosity
- 5.3.2 Pressure Drop
- 5.3.3 Rheological Behavior
- 5.3.4 Newtonian Model
- 5.3.5 Power Law Model
- 5.4 Cavity Filling Analyses and Designs
- 5.4.1 Estimating the Processing Conditions
- 5.4.2 Estimating the Filling Pressure and Minimum Wall Thickness
- 5.4.3 Estimating Clamp Tonnage
- 5.4.4 Predicting Filling Patterns
- 5.4.5 Designing Flow Leaders
- 5.5 Process Simulation
- 5.5.1 Simulation Pre-Processing
- 5.5.2 Simulation Post-Processing
- 5.5.3 Discussion.
- 5.6 Chapter Review
- 6 Feed System Design
- 6.1 Overview
- 6.2 Objectives in Feed System Design
- 6.2.1 Conveying the Polymer Melt from Machine to Cavities
- 6.2.2 Impose Minimal Pressure Drop
- 6.2.3 Consume Minimal Material
- 6.2.4 Control Flow Rates
- 6.3 Feed System Types
- 6.3.1 Two-Plate Mold
- 6.3.2 Three-Plate Mold
- 6.3.3 Hot Runner Molds
- 6.4 Feed System Analysis
- 6.4.1 Determine Type of Feed System
- 6.4.2 Determine Feed System Layout
- 6.4.3 Estimate Pressure Drops
- 6.4.4 Calculate Runner Volume
- 6.4.5 Optimize Runner Diameters
- 6.4.6 Balance Flow Rates
- 6.4.7 Estimate Runner Cooling Times
- 6.4.8 Estimate Residence Time
- 6.5 Feed System Simulation
- 6.5.1 Hot Runners
- 6.5.2 Cold Runners
- 6.6 Practical Issues
- 6.6.1 Color Changes with Hot Runners
- 6.6.2 Runner Cross-Sections
- 6.6.3 Sucker Pins
- 6.6.4 Runner Shut-Offs
- 6.6.5 Standard Runner Sizes
- 6.6.6 Steel Safe Designs
- 6.7 Advanced Feed Systems
- 6.7.1 Insulated Runner
- 6.7.2 Stack Molds
- 6.7.3 Branched Runners
- 6.7.4 Dynamic Melt Control
- 6.8 Chapter Review
- 7 Gating Design
- 7.1 Objectives of Gating Design
- 7.1.1 Connecting the Runner to the Mold Cavity
- 7.1.2 Provide Automatic De-gating
- 7.1.3 Maintain Part Aesthetics
- 7.1.4 Avoid Excessive Shear or Pressure Drop
- 7.1.5 Control Pack Times
- 7.2 Common Gate Designs
- 7.2.1 Sprue Gate
- 7.2.2 Pin-Point Gate
- 7.2.3 Edge Gate
- 7.2.4 Tab Gate
- 7.2.5 Fan Gate
- 7.2.6 Flash/Diaphragm Gate
- 7.2.7 Tunnel/Submarine Gate
- 7.2.8 Thermal Gate
- 7.2.9 Valve Gate
- 7.3 The Gating Design Process
- 7.3.1 Determine Gate Location(s)
- 7.3.2 Determine Type of Gate
- 7.3.3 Calculate Shear Rates
- 7.3.4 Calculate Pressure Drop
- 7.3.5 Calculate Gate Freeze Time
- 7.3.6 Adjust Dimensions
- 7.3.7 Gate Verification by Simulation
- 7.4 Chapter Review
- 8 Venting.
- 8.1 Venting Design Objectives
- 8.1.1 Release Compressed Air
- 8.1.2 Contain Plastic Melt
- 8.1.3 Minimize Maintenance
- 8.2 Venting Analysis
- 8.2.1 Estimate Air Displacement and Rate
- 8.2.2 Identify Number and Location of Vents
- 8.2.3 Specify Vent Dimensions
- 8.3 Venting Designs
- 8.3.1 Vents on Parting Plane
- 8.3.2 Vents around Ejector Pins
- 8.3.3 Vents in Dead Pockets
- 8.3.4 Vents with Porous Metals
- 8.3.5 3D Printed Porous Inserts
- 8.4 Venting Best Practices
- 8.4.1 Venting Simulation
- 8.4.2 Vent Sensing
- 8.5 Chapter Review
- 9 Cooling System Design
- 9.1 Objectives in Cooling System Design
- 9.1.1 Maximize Heat Transfer Rates
- 9.1.2 Maintain Uniform Wall Temperature
- 9.1.3 Minimize Mold Cost
- 9.1.4 Minimize Volume and Complexity
- 9.1.5 Maximize Reliability
- 9.1.6 Facilitate Mold Usage
- 9.2 The Cooling System Design Process
- 9.2.1 Calculate the Required Cooling Time
- 9.2.2 Evaluate Required Heat Transfer Rate
- 9.2.3 Assess Coolant Flow Rate
- 9.2.4 Assess Cooling Line Diameter
- 9.2.5 Select Cooling Line Depth
- 9.2.6 Select Cooling Line Pitch
- 9.2.7 Cooling Line Routing
- 9.2.8 Cooling Simulation
- 9.3 Cooling System Designs
- 9.3.1 Cooling Line Networks
- 9.3.2 Cooling Inserts
- 9.3.3 Highly Conductive Inserts
- 9.3.4 Cooling of Slender Cores
- 9.3.4.1 Cooling Insert
- 9.3.4.2 Baffles
- 9.3.4.3 Bubblers
- 9.3.4.4 Heat Pipes
- 9.3.4.5 Conductive Pin
- 9.3.4.6 Interlocking Core with Air Channel
- 9.3.5 One-Sided Heat Flow
- 9.4 Conformal Cooling
- 9.4.1 Spiral and Serpentine Designs
- 9.4.2 Network Designs
- 9.4.3 Lattice and Generative Designs
- 9.4.4 Comparison and Discussion
- 9.5 Advanced Temperature Control
- 9.5.1 Pulsed Cooling
- 9.5.2 Conduction Heating
- 9.5.3 Induction Heating
- 9.5.4 Managed Heat Transfer
- 9.6 Chapter Review
- 10 Shrinkage and Warpage.
- 10.1 The Shrinkage and Warpage Analysis Process
- 10.1.1 Estimate Process Conditions
- 10.1.2 Model Compressibility Behavior
- 10.1.3 Assess Volumetric Shrinkage
- 10.1.4 Evaluate Isotropic Linear Shrinkage
- 10.1.5 Evaluate Anisotropic Shrinkage
- 10.1.6 Warpage Estimation
- 10.2 Shrinkage and Warpage Simulation
- 10.2.1 Methodology
- 10.2.2 Pressure and Temperature Prediction
- 10.2.3 Shrinkage Prediction
- 10.2.4 Warpage Prediction
- 10.3 Shrinkage and Warpage Design Practices
- 10.3.1 Gating Dependence
- 10.3.2 Injection Compression Molding
- 10.3.3 Processing Corrections
- 10.3.4 Semicrystalline Plastics
- 10.3.5 Effect of Fillers
- 10.3.6 Shrinkage Range Estimation
- 10.3.7 Mold Commissioning and Shrinkage Validation
- 10.3.8 "Steel Safe" Mold Design
- 10.3.9 Warpage Avoidance and Compensation
- 10.4 Chapter Review
- 11 Ejection System Design
- 11.1 Objectives in Ejection System Design
- 11.1.1 Allow Mold to Open
- 11.1.2 Transmit Ejection Forces to Moldings
- 11.1.3 Minimize Distortion of Moldings
- 11.1.4 Maximize Ejection Speed
- 11.1.5 Minimize Cooling Interference
- 11.1.6 Minimize Impact on Part Surfaces
- 11.1.7 Minimize Complexity and Cost
- 11.2 The Ejector System Design Process
- 11.2.1 Identify Mold Parting Surfaces
- 11.2.2 Estimate Ejection Forces
- 11.2.3 Determine Ejector Push Area and Perimeter
- 11.2.4 Specify Type, Number, and Size of Ejectors
- 11.2.5 Lay Out Ejectors
- 11.2.6 Detail Ejectors and Related Components
- 11.3 Ejector System Analyses and Designs
- 11.3.1 Ejector Pins
- 11.3.2 Ejector Blades
- 11.3.3 Ejector Sleeves
- 11.3.4 Stripper Plates
- 11.3.5 Elastic Deformation around Undercuts
- 11.3.6 Core Pulls
- 11.3.7 Slides
- 11.3.8 Early Ejector Return Systems
- 11.4 Advanced Ejection Systems
- 11.4.1 Split Cavity Molds
- 11.4.2 Collapsible Cores.