Cargando…

Injection mold design engineering /

Detalles Bibliográficos
Clasificación:TP1150
Autor principal: Kazmer, David (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Munich : Hanser, [2022]
Edición:3rd edition.
Temas:
Tabla de Contenidos:
  • Intro
  • Preface
  • Contents
  • Nomenclature
  • 1 Introduction
  • 1.1 Overview of the Injection Molding Process
  • 1.2 Mold Functions
  • 1.3 Mold Structures
  • 1.3.1 External View of Mold
  • 1.3.2 View of Mold during Part Ejection
  • 1.3.3 Mold Cross-Section and Function
  • 1.4 Other Common Mold Types
  • 1.4.1 Three-Plate, Multicavity Family Mold
  • 1.4.2 Hot Runner, Multigated, Single-Cavity Mold
  • 1.4.3 Comparison
  • 1.5 The Mold Development Process
  • 1.6 Mold Standards
  • 1.7 Chapter Review
  • 2 Plastic Part Design
  • 2.1 The Product Development Process
  • 2.1.1 Product Definition
  • 2.1.2 Product Design
  • 2.1.3 Development
  • 2.1.4 Scale-Up and Launch
  • 2.1.5 Role of Mold Design in Manufacturing Strategy
  • 2.2 Prototyping Strategy
  • 2.2.1 3D Printing by Material Extrusion (Fused Deposition Modeling)
  • 2.2.2 3D Printing by Selective Laser Sintering
  • 2.2.3 3D Printing by Stereolithography, Digital Light Processing, and Continuous Liquid Interface Production
  • 2.2.4 3D Printing by PolyJet and Multi Jet Fusion
  • 2.3 Design Requirements
  • 2.3.1 Application Engineering Information
  • 2.3.2 Computer-Aided Engineering (CAE)
  • 2.3.3 Production Planning
  • 2.3.4 End-Use Requirements
  • 2.3.5 Design for Manufacturing and Assembly
  • 2.3.6 Plastic Material Properties
  • 2.4 Design for Injection Molding
  • 2.4.1 Uniform Wall Thickness
  • 2.4.2 Rib Design
  • 2.4.3 Boss Design
  • 2.4.4 Corner Design
  • 2.4.5 Surface Finish and Textures
  • 2.4.6 Draft
  • 2.4.7 Undercuts
  • 2.5 Sustainability
  • 2.6 Chapter Review
  • 3 Mold Procurement
  • 3.1 Overview
  • 3.2 The Procurement Process
  • 3.3 Molded Part Cost Estimation
  • 3.3.1 Mold Cost per Part
  • 3.3.2 Material Cost per Part
  • 3.3.3 Processing Cost per Part
  • 3.3.4 Defect Cost per Part
  • 3.4 Mold Cost Estimation
  • 3.4.1 Mold Base Cost Estimation
  • 3.4.2 Cavity Cost Estimation.
  • 3.4.2.1 Insert Cost Estimation
  • 3.4.2.2 Inserts Discount Factor
  • 3.4.2.3 Insert Cost Machining Factors
  • 3.4.2.4 Insert Cost Finishing Factors
  • 3.4.3 Mold Customization
  • 3.5 Rapid and Additive Manufacturing
  • 3.5.1 Common Additively Manufactured Materials
  • 3.5.2 Additive Manufacturing Process Performance Metrics
  • 3.5.3 Design for Additive Manufacturing Guidelines
  • 3.5.4 Preferred Workflow and File Formats
  • 3.6 Mold Selection by Breakeven Analysis
  • 3.7 Chapter Review
  • 4 Mold Layout Design
  • 4.1 Parting Plane Design
  • 4.1.1 Determine Mold Opening Direction
  • 4.1.2 Determine Parting Line
  • 4.1.3 Parting Plane
  • 4.1.4 Shut-Offs
  • 4.2 Cavity and Core Insert Creation
  • 4.2.1 Height Dimension
  • 4.2.2 Length and Width Dimensions
  • 4.2.3 Adjustments
  • 4.3 Mold Base Selection
  • 4.3.1 Cavity Layouts
  • 4.3.2 Mold Base Sizing
  • 4.3.3 Molding Machine Compatibility
  • 4.3.4 Mold Base Suppliers
  • 4.4 Material Selection
  • 4.4.1 Strength vs. Heat Transfer
  • 4.4.2 Hardness vs. Machinability
  • 4.4.3 Material Summary
  • 4.4.4 Surface Treatments
  • 4.5 Chapter Review
  • 5 Cavity Filling Analysis and Design
  • 5.1 Overview
  • 5.2 Objectives in Cavity Filling
  • 5.2.1 Complete Filling of Mold Cavities
  • 5.2.2 Avoid Uneven Filling or Over-Packing
  • 5.2.3 Control the Melt Flow
  • 5.3 Viscous Flow
  • 5.3.1 Shear Stress, Shear Rate, and Viscosity
  • 5.3.2 Pressure Drop
  • 5.3.3 Rheological Behavior
  • 5.3.4 Newtonian Model
  • 5.3.5 Power Law Model
  • 5.4 Cavity Filling Analyses and Designs
  • 5.4.1 Estimating the Processing Conditions
  • 5.4.2 Estimating the Filling Pressure and Minimum Wall Thickness
  • 5.4.3 Estimating Clamp Tonnage
  • 5.4.4 Predicting Filling Patterns
  • 5.4.5 Designing Flow Leaders
  • 5.5 Process Simulation
  • 5.5.1 Simulation Pre-Processing
  • 5.5.2 Simulation Post-Processing
  • 5.5.3 Discussion.
  • 5.6 Chapter Review
  • 6 Feed System Design
  • 6.1 Overview
  • 6.2 Objectives in Feed System Design
  • 6.2.1 Conveying the Polymer Melt from Machine to Cavities
  • 6.2.2 Impose Minimal Pressure Drop
  • 6.2.3 Consume Minimal Material
  • 6.2.4 Control Flow Rates
  • 6.3 Feed System Types
  • 6.3.1 Two-Plate Mold
  • 6.3.2 Three-Plate Mold
  • 6.3.3 Hot Runner Molds
  • 6.4 Feed System Analysis
  • 6.4.1 Determine Type of Feed System
  • 6.4.2 Determine Feed System Layout
  • 6.4.3 Estimate Pressure Drops
  • 6.4.4 Calculate Runner Volume
  • 6.4.5 Optimize Runner Diameters
  • 6.4.6 Balance Flow Rates
  • 6.4.7 Estimate Runner Cooling Times
  • 6.4.8 Estimate Residence Time
  • 6.5 Feed System Simulation
  • 6.5.1 Hot Runners
  • 6.5.2 Cold Runners
  • 6.6 Practical Issues
  • 6.6.1 Color Changes with Hot Runners
  • 6.6.2 Runner Cross-Sections
  • 6.6.3 Sucker Pins
  • 6.6.4 Runner Shut-Offs
  • 6.6.5 Standard Runner Sizes
  • 6.6.6 Steel Safe Designs
  • 6.7 Advanced Feed Systems
  • 6.7.1 Insulated Runner
  • 6.7.2 Stack Molds
  • 6.7.3 Branched Runners
  • 6.7.4 Dynamic Melt Control
  • 6.8 Chapter Review
  • 7 Gating Design
  • 7.1 Objectives of Gating Design
  • 7.1.1 Connecting the Runner to the Mold Cavity
  • 7.1.2 Provide Automatic De-gating
  • 7.1.3 Maintain Part Aesthetics
  • 7.1.4 Avoid Excessive Shear or Pressure Drop
  • 7.1.5 Control Pack Times
  • 7.2 Common Gate Designs
  • 7.2.1 Sprue Gate
  • 7.2.2 Pin-Point Gate
  • 7.2.3 Edge Gate
  • 7.2.4 Tab Gate
  • 7.2.5 Fan Gate
  • 7.2.6 Flash/Diaphragm Gate
  • 7.2.7 Tunnel/Submarine Gate
  • 7.2.8 Thermal Gate
  • 7.2.9 Valve Gate
  • 7.3 The Gating Design Process
  • 7.3.1 Determine Gate Location(s)
  • 7.3.2 Determine Type of Gate
  • 7.3.3 Calculate Shear Rates
  • 7.3.4 Calculate Pressure Drop
  • 7.3.5 Calculate Gate Freeze Time
  • 7.3.6 Adjust Dimensions
  • 7.3.7 Gate Verification by Simulation
  • 7.4 Chapter Review
  • 8 Venting.
  • 8.1 Venting Design Objectives
  • 8.1.1 Release Compressed Air
  • 8.1.2 Contain Plastic Melt
  • 8.1.3 Minimize Maintenance
  • 8.2 Venting Analysis
  • 8.2.1 Estimate Air Displacement and Rate
  • 8.2.2 Identify Number and Location of Vents
  • 8.2.3 Specify Vent Dimensions
  • 8.3 Venting Designs
  • 8.3.1 Vents on Parting Plane
  • 8.3.2 Vents around Ejector Pins
  • 8.3.3 Vents in Dead Pockets
  • 8.3.4 Vents with Porous Metals
  • 8.3.5 3D Printed Porous Inserts
  • 8.4 Venting Best Practices
  • 8.4.1 Venting Simulation
  • 8.4.2 Vent Sensing
  • 8.5 Chapter Review
  • 9 Cooling System Design
  • 9.1 Objectives in Cooling System Design
  • 9.1.1 Maximize Heat Transfer Rates
  • 9.1.2 Maintain Uniform Wall Temperature
  • 9.1.3 Minimize Mold Cost
  • 9.1.4 Minimize Volume and Complexity
  • 9.1.5 Maximize Reliability
  • 9.1.6 Facilitate Mold Usage
  • 9.2 The Cooling System Design Process
  • 9.2.1 Calculate the Required Cooling Time
  • 9.2.2 Evaluate Required Heat Transfer Rate
  • 9.2.3 Assess Coolant Flow Rate
  • 9.2.4 Assess Cooling Line Diameter
  • 9.2.5 Select Cooling Line Depth
  • 9.2.6 Select Cooling Line Pitch
  • 9.2.7 Cooling Line Routing
  • 9.2.8 Cooling Simulation
  • 9.3 Cooling System Designs
  • 9.3.1 Cooling Line Networks
  • 9.3.2 Cooling Inserts
  • 9.3.3 Highly Conductive Inserts
  • 9.3.4 Cooling of Slender Cores
  • 9.3.4.1 Cooling Insert
  • 9.3.4.2 Baffles
  • 9.3.4.3 Bubblers
  • 9.3.4.4 Heat Pipes
  • 9.3.4.5 Conductive Pin
  • 9.3.4.6 Interlocking Core with Air Channel
  • 9.3.5 One-Sided Heat Flow
  • 9.4 Conformal Cooling
  • 9.4.1 Spiral and Serpentine Designs
  • 9.4.2 Network Designs
  • 9.4.3 Lattice and Generative Designs
  • 9.4.4 Comparison and Discussion
  • 9.5 Advanced Temperature Control
  • 9.5.1 Pulsed Cooling
  • 9.5.2 Conduction Heating
  • 9.5.3 Induction Heating
  • 9.5.4 Managed Heat Transfer
  • 9.6 Chapter Review
  • 10 Shrinkage and Warpage.
  • 10.1 The Shrinkage and Warpage Analysis Process
  • 10.1.1 Estimate Process Conditions
  • 10.1.2 Model Compressibility Behavior
  • 10.1.3 Assess Volumetric Shrinkage
  • 10.1.4 Evaluate Isotropic Linear Shrinkage
  • 10.1.5 Evaluate Anisotropic Shrinkage
  • 10.1.6 Warpage Estimation
  • 10.2 Shrinkage and Warpage Simulation
  • 10.2.1 Methodology
  • 10.2.2 Pressure and Temperature Prediction
  • 10.2.3 Shrinkage Prediction
  • 10.2.4 Warpage Prediction
  • 10.3 Shrinkage and Warpage Design Practices
  • 10.3.1 Gating Dependence
  • 10.3.2 Injection Compression Molding
  • 10.3.3 Processing Corrections
  • 10.3.4 Semicrystalline Plastics
  • 10.3.5 Effect of Fillers
  • 10.3.6 Shrinkage Range Estimation
  • 10.3.7 Mold Commissioning and Shrinkage Validation
  • 10.3.8 "Steel Safe" Mold Design
  • 10.3.9 Warpage Avoidance and Compensation
  • 10.4 Chapter Review
  • 11 Ejection System Design
  • 11.1 Objectives in Ejection System Design
  • 11.1.1 Allow Mold to Open
  • 11.1.2 Transmit Ejection Forces to Moldings
  • 11.1.3 Minimize Distortion of Moldings
  • 11.1.4 Maximize Ejection Speed
  • 11.1.5 Minimize Cooling Interference
  • 11.1.6 Minimize Impact on Part Surfaces
  • 11.1.7 Minimize Complexity and Cost
  • 11.2 The Ejector System Design Process
  • 11.2.1 Identify Mold Parting Surfaces
  • 11.2.2 Estimate Ejection Forces
  • 11.2.3 Determine Ejector Push Area and Perimeter
  • 11.2.4 Specify Type, Number, and Size of Ejectors
  • 11.2.5 Lay Out Ejectors
  • 11.2.6 Detail Ejectors and Related Components
  • 11.3 Ejector System Analyses and Designs
  • 11.3.1 Ejector Pins
  • 11.3.2 Ejector Blades
  • 11.3.3 Ejector Sleeves
  • 11.3.4 Stripper Plates
  • 11.3.5 Elastic Deformation around Undercuts
  • 11.3.6 Core Pulls
  • 11.3.7 Slides
  • 11.3.8 Early Ejector Return Systems
  • 11.4 Advanced Ejection Systems
  • 11.4.1 Split Cavity Molds
  • 11.4.2 Collapsible Cores.