Cargando…

Jack Sabin, scientist and friend /

Jack Sabin, Scientist and Friend, Volume 85 in the Advances in Quantum Chemistry series, highlights new advances in the field, with chapters in this new release including: Elastic scattering of electrons and positrons from alkali atoms, Dissipative dynamics in many-atom systems, Shape sensitive Rama...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Oddershede, Jens, 1945-, Br�andas, Erkki
Formato: eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2022.
Colección:Advances in quantum chemistry ; 85
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Jack Sabin, Scientist and Friend
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Erkki J. B�rndas
  • Jens Oddershede
  • Chapter One: Energy deposition in a many-atom system with dissipative dynamics
  • 1. Introduction
  • 2. Energy deposition by atomic ions from time-correlation functions of collisional operators
  • 2.1. Formalism of collisional TCFs
  • 2.2. Special cases of collisional TCFs
  • 3. Energy deposition in a dissipative medium using a reduced density operator
  • 3.1. Dissipative dynamics after initial thermal equilibrium
  • 3.2. Effects of medium dissipative dynamics
  • 3.3. Outline of treatments for calculations of energy deposition including medium dissipative dynamics
  • 4. Conclusion
  • Acknowledgments
  • References
  • Chapter Two: Shape-sensitive inelastic scattering from metallic nanoparticles
  • 1. Raman scattering from single metal particles
  • 2. Raman cross-section
  • 3. Particle polarizability
  • 4. Shape factor for Raman scattering
  • 5. Estimates and discussion
  • Appendix
  • References
  • Chapter Three: Artificial intelligence and E-learning
  • 1. Introduction
  • 2. Early history of computing
  • 3. Our experience with ai and e-learning
  • 3.1. John Perram
  • 3.2. Morten Matras
  • 4. Classical mechanics as E-learning
  • 5. Results
  • 6. Perspectives
  • References
  • Chapter Four: Structure and correlations for harmonically confined charges
  • 1. Introduction
  • 2. Density functional theory
  • 3. Classical mechanics
  • 3.1. Fluid phase
  • 3.2. Ordered phase
  • 4. Quantum mechanics
  • 5. Discussion
  • Acknowledgments
  • References
  • Chapter Five: New insights on nonlinear solvatochromism in binary mixture of solvents
  • 1. Introduction
  • 2. Methods and details
  • 2.1. Force field parameters for the solute and solvent
  • 2.2. Solute polarization
  • 2.3. Molecular dynamics simulations.
  • 2.4. Solvation analysis
  • 2.5. Calculation of the excitation wavelength
  • 3. Results
  • 3.1. Solute polarization
  • 3.2. Solvation analysis
  • 3.3. Excitation wavelength
  • 3.4. Energy-solvation relationship
  • 4. Conclusions
  • Acknowledgments
  • References
  • Chapter Six: Mean total and orbital excitation energies of atomic ions in two approaches of the Thomas-Fermi theory
  • 1. Introduction
  • 2. Theory
  • 2.1. Thomas-Fermi theory with Amaldi corrections
  • 2.2. Thomas-Fermi-Dirac-Weiz�scker density functional approach
  • 3. Results
  • 3.1. Total mean excitation energies
  • 3.2. One-electron mean excitation energies
  • 3.3. Shell-wise mean excitation energies
  • 4. Conclusions
  • Acknowledgments
  • References
  • Chapter Seven: Recent progress in electron-propagator, extended-Koopmans-theorem and self-consistent-field approaches to ...
  • 1. New diagonal self-energy approximations in electron-propagator theory
  • 1.1. Electron propagator theory
  • 1.2. Self-energy approximations
  • 1.3. Computational scaling and numerical results
  • 2. Approaching exact results with the extended Koopmans theorem
  • 3. Interpretation of Delta-self-consistent-field calculations
  • 3.1. Eigenvalues of the sum of two idempotent matrices
  • 3.2. Eigenvalues of the difference of two idempotent matrices
  • 3.3. Dyson orbitals, probability factors and Fukui functions
  • 3.4. Other classes of transitions
  • 4. Conclusions
  • Acknowledgments
  • References
  • Chapter Eight: The electronic stopping power of heavy targets
  • 1. Introduction
  • 2. Theoretical description
  • 2.1. The shell-wise local plasma approximation
  • 2.2. Electronic structure
  • 3. Results and discussion
  • 4. Conclusions
  • Acknowledgments
  • References
  • Chapter Nine: Density-functional methods for extended helical systems
  • 1. Introduction
  • 2. Helical band structure methods.
  • 3. Geometry optimization
  • 4. Multipole moment expansions
  • 5. Long-range axial multipole moment expansions
  • 6. Polylogarithm evaluation methods
  • 7. Ortho-connected polythiophenes
  • Acknowledgments
  • References
  • Chapter Ten: Atomic ionization, capture, and stopping cross sections by ion impact examined with the Benford law
  • 1. Introduction
  • 2. The Benford law
  • 3. The atomic data sets
  • 3.1. Ionization cross-section data set
  • 3.2. Electron capture cross-section data set
  • 3.3. Theoretical stopping power data set
  • 3.4. Experimental stopping power data set
  • 4. Parameters of the Benford law
  • 4.1. The width and the density of points
  • 4.2. The degree of ``Benfordness��
  • 5. Results and discussion
  • 5.1. Examination of the atomic data sets
  • 5.1.1. Ionization cross sections
  • 5.1.2. Capture cross sections
  • 5.1.3. Theoretical stopping power cross sections
  • 5.1.4. Experimental stopping power cross sections
  • 5.2. Two numerical experiences
  • 5.2.1. Testing the universal scaling of Pinkham
  • 5.2.2. The whole data set
  • 6. Conclusion
  • Acknowledgments
  • References
  • Chapter Eleven: Long-lived molecular dications: A selected probe for double ionization
  • 1. Introduction
  • 2. The DETOF technique
  • 3. Discussion of molecular dications data
  • 3.1. Metastable molecular dications
  • 3.2. Dication production mechanisms
  • 4. Final remarks
  • Acknowledgments
  • References
  • Chapter Twelve: Implicit and explicit solvent models have opposite effects on radiation damage rate constant for thymine
  • 1. Introduction
  • 2. Theory
  • 3. Computational methods
  • 4. Results and discussion
  • 4.1. Solvent effects of the PCM solvent model
  • 4.2. Solvent effects of microsolvation with a single water molecule
  • 4.3. Combination of the PCM and microsolvation with a single water molecule.
  • 4.4. Solvent effects of microsolvation with two water molecules
  • 4.5. Combination of the PCM and microsolvation with two water molecules
  • 4.6. Tunneling corrections
  • 5. Conclusion
  • Acknowledgements
  • References
  • Chapter Thirteen: Model dielectric functions for ion stopping: The relation between their shell corrections, plasmon disp ...
  • 1. Introduction
  • 1.1. Stopping in the linear regime
  • 1.2. Physical observable quantities
  • 1.3. Sum rules, Kramers-Kronig relations and mean excitation energy
  • 2. Model dielectric functions (DF)
  • 2.1. Ad hoc DF
  • 2.2. Examples of classical dielectric functions
  • 2.2.1. Extended Drude
  • 2.2.2. Drude-Lindhard
  • 2.3. Examples of quantum-physics-based dielectric functions
  • 2.3.1. Lindhard and Mermin dielectric function
  • 2.3.2. Levine-Louie dielectric function for insulators
  • 2.3.3. Dielectric function using Gaussian occupation
  • 2.3.4. GOS-based dielectric functions
  • 2.3.5. Dielectric function based on Harmonic oscillator
  • 3. Compton profiles
  • 4. Multiple oscillators
  • 5. Shell corrections in stopping
  • 6. Conclusion
  • Acknowledgments
  • Appendix A. Lindhard dielectric function
  • Appendix B. Stopping formulae and shell corrections for simple dispersion relations
  • Appendix C. Straggling formula for AH and Drude-Lindhard DF
  • References
  • Chapter Fourteen: Hierarchical relaxation in frustrated systems
  • 1. Introduction
  • 2. The frustrated molecular glass
  • 3. Hierarchical dynamics: Quantum rotor glass
  • 4. Classical quadrupolar glasses
  • 5. Frustrated Bose glass dynamics
  • 6. Conclusion
  • Acknowledgments
  • References
  • Chapter Fifteen: Electronic stopping from orbital mean excitation energies including both projectile and target electroni ...
  • 1. Introduction
  • 2. Stopping power
  • 2.1. The Bethe theory for structured projectiles within the First Born Approximation.
  • 2.2. Projectile atomic form factor
  • 2.3. Harmonically bound target electrons
  • 2.4. Projectile beam fraction
  • 3. Analysis and discussion
  • 4. Summary
  • Acknowledgments
  • References
  • Chapter Sixteen: The propensity of terpenes to invoke concerted reactions in their biosynthesis
  • 1. Introduction
  • 2. Methods
  • 3. Results and discussion
  • 4. Conclusions
  • 5. Postscript
  • References
  • Chapter Seventeen: An ionic Hamiltonian for transition metal atoms: Kondo resonances and tunneling currents
  • 1. Introduction
  • 2. The ionic Hamiltonian and multiorbital degeneration
  • 3. Green functions, EOM, tunneling currents
  • 3.1. Green functions and EOM solution
  • 3.2. Kondo resonance for a d-shell with S=5/2 and S=1/2
  • 3.3. Co on CuN, anisotropy interaction, Kondo resonance
  • 4. Discussion and conclusions
  • Acknowledgments
  • Appendix
  • References
  • Index.