|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1345638530 |
003 |
OCoLC |
005 |
20231120010705.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
220926s2022 mau o 000 0deng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d OPELS
|d SFB
|d OCLCF
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780323991896
|q (electronic bk.)
|
020 |
|
|
|a 0323991890
|q (electronic bk.)
|
020 |
|
|
|z 9780323991889
|
020 |
|
|
|z 0323991882
|
035 |
|
|
|a (OCoLC)1345638530
|
050 |
|
4 |
|a QD462
|
082 |
0 |
4 |
|a 541.28
|2 23
|
245 |
0 |
0 |
|a Jack Sabin, scientist and friend /
|c edited by Jens Oddershede, Erkki J. Br�andas.
|
260 |
|
|
|a Cambridge, MA :
|b Academic Press,
|c 2022.
|
300 |
|
|
|a 1 online resource.
|
490 |
0 |
|
|a Advances in quantum chemistry ;
|v 85
|
520 |
|
|
|a Jack Sabin, Scientist and Friend, Volume 85 in the Advances in Quantum Chemistry series, highlights new advances in the field, with chapters in this new release including: Elastic scattering of electrons and positrons from alkali atoms, Dissipative dynamics in many-atom systems, Shape sensitive Raman scattering from Nano-particles, Experience in E-learning and Artificial Intelligence, Structure and Correlation of Charges in a Harmonic Trap, Simulation of Molecular Spectroscopy in Binary Solvents, Approach for Orbital and Total Mean Excitation Energies of Atoms, and A New Generation of Quasiparticle Self-Energies. Additional sections cover: The stopping power of relativistic targets, Density functional methods for extended helical systems, Inspecting nlm-distributions due to charge exchange collisions of bare ions with hydrogen, Long-lived molecular dications: a selected probe for double ionization, and much more.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Jack Sabin, Scientist and Friend -- Copyright -- Contents -- Contributors -- Preface -- Erkki J. B�rndas -- Jens Oddershede -- Chapter One: Energy deposition in a many-atom system with dissipative dynamics -- 1. Introduction -- 2. Energy deposition by atomic ions from time-correlation functions of collisional operators -- 2.1. Formalism of collisional TCFs -- 2.2. Special cases of collisional TCFs -- 3. Energy deposition in a dissipative medium using a reduced density operator -- 3.1. Dissipative dynamics after initial thermal equilibrium -- 3.2. Effects of medium dissipative dynamics -- 3.3. Outline of treatments for calculations of energy deposition including medium dissipative dynamics -- 4. Conclusion -- Acknowledgments -- References -- Chapter Two: Shape-sensitive inelastic scattering from metallic nanoparticles -- 1. Raman scattering from single metal particles -- 2. Raman cross-section -- 3. Particle polarizability -- 4. Shape factor for Raman scattering -- 5. Estimates and discussion -- Appendix -- References -- Chapter Three: Artificial intelligence and E-learning -- 1. Introduction -- 2. Early history of computing -- 3. Our experience with ai and e-learning -- 3.1. John Perram -- 3.2. Morten Matras -- 4. Classical mechanics as E-learning -- 5. Results -- 6. Perspectives -- References -- Chapter Four: Structure and correlations for harmonically confined charges -- 1. Introduction -- 2. Density functional theory -- 3. Classical mechanics -- 3.1. Fluid phase -- 3.2. Ordered phase -- 4. Quantum mechanics -- 5. Discussion -- Acknowledgments -- References -- Chapter Five: New insights on nonlinear solvatochromism in binary mixture of solvents -- 1. Introduction -- 2. Methods and details -- 2.1. Force field parameters for the solute and solvent -- 2.2. Solute polarization -- 2.3. Molecular dynamics simulations.
|
505 |
8 |
|
|a 2.4. Solvation analysis -- 2.5. Calculation of the excitation wavelength -- 3. Results -- 3.1. Solute polarization -- 3.2. Solvation analysis -- 3.3. Excitation wavelength -- 3.4. Energy-solvation relationship -- 4. Conclusions -- Acknowledgments -- References -- Chapter Six: Mean total and orbital excitation energies of atomic ions in two approaches of the Thomas-Fermi theory -- 1. Introduction -- 2. Theory -- 2.1. Thomas-Fermi theory with Amaldi corrections -- 2.2. Thomas-Fermi-Dirac-Weiz�scker density functional approach -- 3. Results -- 3.1. Total mean excitation energies -- 3.2. One-electron mean excitation energies -- 3.3. Shell-wise mean excitation energies -- 4. Conclusions -- Acknowledgments -- References -- Chapter Seven: Recent progress in electron-propagator, extended-Koopmans-theorem and self-consistent-field approaches to ... -- 1. New diagonal self-energy approximations in electron-propagator theory -- 1.1. Electron propagator theory -- 1.2. Self-energy approximations -- 1.3. Computational scaling and numerical results -- 2. Approaching exact results with the extended Koopmans theorem -- 3. Interpretation of Delta-self-consistent-field calculations -- 3.1. Eigenvalues of the sum of two idempotent matrices -- 3.2. Eigenvalues of the difference of two idempotent matrices -- 3.3. Dyson orbitals, probability factors and Fukui functions -- 3.4. Other classes of transitions -- 4. Conclusions -- Acknowledgments -- References -- Chapter Eight: The electronic stopping power of heavy targets -- 1. Introduction -- 2. Theoretical description -- 2.1. The shell-wise local plasma approximation -- 2.2. Electronic structure -- 3. Results and discussion -- 4. Conclusions -- Acknowledgments -- References -- Chapter Nine: Density-functional methods for extended helical systems -- 1. Introduction -- 2. Helical band structure methods.
|
505 |
8 |
|
|a 3. Geometry optimization -- 4. Multipole moment expansions -- 5. Long-range axial multipole moment expansions -- 6. Polylogarithm evaluation methods -- 7. Ortho-connected polythiophenes -- Acknowledgments -- References -- Chapter Ten: Atomic ionization, capture, and stopping cross sections by ion impact examined with the Benford law -- 1. Introduction -- 2. The Benford law -- 3. The atomic data sets -- 3.1. Ionization cross-section data set -- 3.2. Electron capture cross-section data set -- 3.3. Theoretical stopping power data set -- 3.4. Experimental stopping power data set -- 4. Parameters of the Benford law -- 4.1. The width and the density of points -- 4.2. The degree of ``Benfordness�� -- 5. Results and discussion -- 5.1. Examination of the atomic data sets -- 5.1.1. Ionization cross sections -- 5.1.2. Capture cross sections -- 5.1.3. Theoretical stopping power cross sections -- 5.1.4. Experimental stopping power cross sections -- 5.2. Two numerical experiences -- 5.2.1. Testing the universal scaling of Pinkham -- 5.2.2. The whole data set -- 6. Conclusion -- Acknowledgments -- References -- Chapter Eleven: Long-lived molecular dications: A selected probe for double ionization -- 1. Introduction -- 2. The DETOF technique -- 3. Discussion of molecular dications data -- 3.1. Metastable molecular dications -- 3.2. Dication production mechanisms -- 4. Final remarks -- Acknowledgments -- References -- Chapter Twelve: Implicit and explicit solvent models have opposite effects on radiation damage rate constant for thymine -- 1. Introduction -- 2. Theory -- 3. Computational methods -- 4. Results and discussion -- 4.1. Solvent effects of the PCM solvent model -- 4.2. Solvent effects of microsolvation with a single water molecule -- 4.3. Combination of the PCM and microsolvation with a single water molecule.
|
505 |
8 |
|
|a 4.4. Solvent effects of microsolvation with two water molecules -- 4.5. Combination of the PCM and microsolvation with two water molecules -- 4.6. Tunneling corrections -- 5. Conclusion -- Acknowledgements -- References -- Chapter Thirteen: Model dielectric functions for ion stopping: The relation between their shell corrections, plasmon disp ... -- 1. Introduction -- 1.1. Stopping in the linear regime -- 1.2. Physical observable quantities -- 1.3. Sum rules, Kramers-Kronig relations and mean excitation energy -- 2. Model dielectric functions (DF) -- 2.1. Ad hoc DF -- 2.2. Examples of classical dielectric functions -- 2.2.1. Extended Drude -- 2.2.2. Drude-Lindhard -- 2.3. Examples of quantum-physics-based dielectric functions -- 2.3.1. Lindhard and Mermin dielectric function -- 2.3.2. Levine-Louie dielectric function for insulators -- 2.3.3. Dielectric function using Gaussian occupation -- 2.3.4. GOS-based dielectric functions -- 2.3.5. Dielectric function based on Harmonic oscillator -- 3. Compton profiles -- 4. Multiple oscillators -- 5. Shell corrections in stopping -- 6. Conclusion -- Acknowledgments -- Appendix A. Lindhard dielectric function -- Appendix B. Stopping formulae and shell corrections for simple dispersion relations -- Appendix C. Straggling formula for AH and Drude-Lindhard DF -- References -- Chapter Fourteen: Hierarchical relaxation in frustrated systems -- 1. Introduction -- 2. The frustrated molecular glass -- 3. Hierarchical dynamics: Quantum rotor glass -- 4. Classical quadrupolar glasses -- 5. Frustrated Bose glass dynamics -- 6. Conclusion -- Acknowledgments -- References -- Chapter Fifteen: Electronic stopping from orbital mean excitation energies including both projectile and target electroni ... -- 1. Introduction -- 2. Stopping power -- 2.1. The Bethe theory for structured projectiles within the First Born Approximation.
|
505 |
8 |
|
|a 2.2. Projectile atomic form factor -- 2.3. Harmonically bound target electrons -- 2.4. Projectile beam fraction -- 3. Analysis and discussion -- 4. Summary -- Acknowledgments -- References -- Chapter Sixteen: The propensity of terpenes to invoke concerted reactions in their biosynthesis -- 1. Introduction -- 2. Methods -- 3. Results and discussion -- 4. Conclusions -- 5. Postscript -- References -- Chapter Seventeen: An ionic Hamiltonian for transition metal atoms: Kondo resonances and tunneling currents -- 1. Introduction -- 2. The ionic Hamiltonian and multiorbital degeneration -- 3. Green functions, EOM, tunneling currents -- 3.1. Green functions and EOM solution -- 3.2. Kondo resonance for a d-shell with S=5/2 and S=1/2 -- 3.3. Co on CuN, anisotropy interaction, Kondo resonance -- 4. Discussion and conclusions -- Acknowledgments -- Appendix -- References -- Index.
|
600 |
1 |
0 |
|a Sabin, Jack.
|
650 |
|
0 |
|a Quantum chemistry.
|
650 |
|
6 |
|a Chimie quantique.
|0 (CaQQLa)201-0045730
|
650 |
|
7 |
|a Quantum chemistry
|2 fast
|0 (OCoLC)fst01085086
|
700 |
1 |
|
|a Oddershede, Jens,
|d 1945-
|
700 |
1 |
|
|a Br�andas, Erkki.
|
776 |
0 |
8 |
|i Print version:
|z 9780323991896
|
776 |
0 |
8 |
|i Print version:
|z 0323991882
|z 9780323991889
|w (OCoLC)1296530330
|
776 |
0 |
8 |
|i Print version:
|t JACK SABIN, SCIENTIST AND FRIEND.
|d [S.l.] : ELSEVIER ACADEMIC PRESS, 2022
|z 0323991882
|w (OCoLC)1296530330
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00653276/85
|z Texto completo
|