Cargando…

Brillouin scattering. : Part 2 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Eggleton, Benjamin J. (Editor ), Steel, Michael J. (Editor ), Poulton, Christopher G. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Massachusetts : Academic Press, [2022]
Colección:Semiconductors and semimetals ; Volume 110.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Brillouin Scattering Part 2
  • Copyright
  • Contents
  • Contributors for Volume 2
  • Preface
  • List of symbols
  • Chapter Seven: SBS-based fiber sensors
  • 1. Background and historical perspective
  • 1.1. Optical fiber sensors
  • 1.2. Point, position-integrated and distributed sensors
  • 1.3. Measurement parameters and metrics
  • 1.4. Historical overview of Brillouin fiber sensors
  • 2. Fundamentals
  • 2.1. Effect of material composition
  • 2.2. Effect of temperature
  • 2.3. Effect of strain
  • 2.4. Effect of hydrostatic pressure
  • 2.5. Specificities of forward Brillouin scattering
  • 3. Time-domain analysis and reflectometry
  • 3.1. Brillouin optical time-domain analysis (B-OTDA)
  • 3.2. Brillouin optical time-domain reflectometry (B-OTDR)
  • 3.3. Performance metrics of time-domain Brillouin sensing protocols
  • 3.3.1. Spatial resolution
  • 3.3.2. Measurement accuracy of the Brillouin frequency shift
  • 3.3.3. Sensing range
  • 3.3.4. Acquisition duration
  • 3.4. Optimization of standard Brillouin optical time domain analysis and reflectometry
  • 3.4.1. Maximizing the signal
  • 3.4.2. Minimizing the noise
  • 3.5. Performance enhancement techniques
  • 3.5.1. Circumventing the resolution limitations imposed by the acoustic lifetime
  • 3.5.2. Increasing the equivalent energy of optical signals
  • 3.5.3. Improving the frequency-scanning mechanism
  • 4. Correlation-domain analysis and reflectometry
  • 4.1. Brillouin-optical correlation-domain analysis
  • 4.2. Brillouin optical correlation-domain reflectometry
  • 4.3. Performance metrics, state-of-the-art and limitations
  • 5. Inter-Modal Brillouin scattering sensors
  • 6. Sensing with specialty fiber and waveguide platforms
  • 7. Forward SBS sensors
  • 7.1. Forward SBS in standard fibers
  • 7.2. Principles of forward SBS sensing
  • 7.3. Distributed analysis of forward SBS.
  • 7.4. Coated fibers
  • 8. Applications and employment
  • 9. Conclusions
  • References
  • Chapter Eight: Brillouin-based radio frequency sources
  • 1. Introduction
  • 2. Background
  • 2.1. Heterodyning of optical signals
  • 3. Key performance metrics of radio frequency sources
  • 4. Fiber-based SBS radio frequency sources
  • 4.1. Generation of tunable RF frequencies with SBS based gains and losses
  • 4.2. The generation of tunable RF frequencies with Brillouin fiber lasers
  • 5. Optoelectronic-oscillators: Fiber- and chip-based approaches
  • 6. RF sources based on high-Q-resonators
  • 6.1. Microcavity Brillouin laser overview
  • 6.2. Microcavity design for Brillouin laser action
  • 6.3. Sources of phase noise in microcavity Brillouin lasers
  • 6.4. A Brillouin microwave synthesizer
  • 6.5. Brillouin frequency reference in electro-optical frequency division
  • 7. Discussion and outlook
  • Acknowledgments
  • References
  • Chapter Nine: Stimulated Brillouin scattering for microwave photonics
  • 1. Challenges in microwave photonics
  • 2. Brillouin scattering for microwave photonics
  • 3. Microwave photonic filtering
  • 4. Tunable phase shifters and delay lines
  • 5. Frequency measurements
  • 6. Perspectives and outlook
  • References
  • Chapter Ten: Integrated Brillouin lasers and their applications
  • 1. Introduction
  • 2. Phase noise and linewidth
  • 2.1. Background
  • 2.2. Parametric nature of Brillouin lasers
  • 2.3. Pump frequency noise
  • 2.4. Fundamental frequency noise (ST linewidth)
  • 2.5. Frequency noise from Brillouin cascade
  • 2.6. Integral linewidth, fractional frequency noise, and drift
  • 3. Integrated Brillouin platforms
  • 3.1. Brillouin gain in silicon nitride waveguides and silica resonators
  • 3.2. Brillouin lasing in silicon nitride waveguides and silica resonators
  • 3.3. Chalcogenide waveguides.
  • 3.3.1. Stimulated Brillouin scattering in chalcogenide waveguides integrated on a chip
  • 3.3.2. Characterization of Brillouin gain in chalcogenide on-chip waveguides
  • 3.3.3. Narrow linewidth Brillouin laser based on chalcogenide photonic chip
  • 3.4. Silicon
  • 3.4.1. Brillouin processes in silicon waveguides
  • 3.4.2. SBS amplification in silicon waveguides
  • 3.4.3. Silicon SBS laser resonators
  • 3.4.4. SBS lasing and performance
  • 4. Cascaded mode operation
  • 4.1. Phase lock cascaded
  • 4.2. Multiple order generation in silicon nitride resonators
  • 5. Mode engineering
  • 6. Applications of on-chip Brillouin
  • 6.1. Optical gyroscopes
  • 6.2. Low-phase noise microwave oscillators
  • 6.3. Visible light atom, molecular and quantum applications
  • 6.4. Precision frequency synchronized fiber links
  • 6.5. Coherent fiber optic communications
  • References
  • Chapter Eleven: SBS in optical communication systems: The good, the bad and the ugly
  • 1. Introduction
  • 1.1. Stimulated Brillouin scattering and optical communications
  • 1.2. The optical communications context
  • 1.3. Chapter outline
  • 2. Early use of SBS in communications
  • 3. Resurgence of SBS in optical communications
  • 3.1. Non-coherent systems
  • 3.2. Coherent systems
  • 4. Future directions for SBS in optical communication networks
  • References
  • Chapter Twelve: Slow light, dynamic gratings, and light storage
  • 1. Introduction
  • 2. SBS slow light
  • 2.1. Experimental implementations
  • 3. Brillouin dynamic gratings
  • 3.1. Physics of BDG formation and readout
  • 3.2. Reconfigurable delay lines
  • 4. SBS-based quasi-light storage
  • 5. SBS-based light storage
  • 6. Storage in optomechanical resonators
  • 7. Discussion, summary, and outlook
  • 7.1. Delay time
  • 7.2. Application to optical data streams
  • Acknowledgments
  • References.
  • Chapter Thirteen: Nonreciprocity in Brillouin scattering
  • 1. Introduction
  • 2. Nonreciprocity arising from Brillouin phase matching
  • 2.1. Scattering regime
  • 2.1.1. Nonreciprocal phase mismatch
  • 2.1.2. Example: Intermodal Brillouin scattering
  • 2.2. Stimulated gain regime
  • 2.3. Induced transparency processes
  • 3. Experimental platforms
  • 3.1. Bulk and fiber media
  • 3.2. Whispering gallery resonators
  • 3.3. Integrated photonic systems
  • Acknowledgments
  • References
  • Chapter Fourteen: Electromechanical Brillouin scattering
  • 1. Electromechanical excitation of acoustic waves
  • 1.1. Common piezoelectric materials
  • 1.1.1. Lithium niobate
  • 1.1.2. Zinc oxide
  • 1.1.3. III-V materials
  • 1.2. Generation of acoustic waves: Electromechanical transducers
  • 1.2.1. Interdigital transducers
  • 1.2.2. Bulk acoustic wave transducers
  • 2. Brillouin scattering by electromechanically excited acoustic wave
  • 2.1. Acoustic modes
  • 2.1.1. Acoustic waveguide and cavity
  • 2.1.2. Phononic crystal slab waveguide and cavity
  • 2.2. Electromechanical Brillouin scattering
  • 2.2.1. Physical effects
  • 2.2.2. Phase-matching conditions
  • 2.2.3. Electromechanical Brillouin scattering in different configurations
  • 3. Applications
  • 3.1. Next-generation acousto-optics
  • 3.2. Nonreciprocal devices and circuits
  • 3.3. Quantum transduction
  • 3.4. Nano-opto-electro-mechanical (NOEM) platforms
  • Acknowledgments
  • References
  • Chapter Fifteen: Brillouin light scattering in biological systems
  • 1. Introduction to Brillouin light scattering in biological systems
  • 2. History of Brillouin technology from spectroscopy to imaging
  • 3. Key aspects of Brillouin light scattering in biological matter
  • 3.1. The relation of Brillouin frequency shift to mechanical properties
  • 3.2. The influence of hydration on Brillouin scattering.
  • 4. Applications of Brillouin scattering to biology and medicine
  • 4.1. Mechanobiology
  • 4.2. Medical diagnostics
  • 4.2.1. Ophthalmology
  • 4.2.2. Cancer research and diagnostics
  • 4.2.3. Bone and cartilage health
  • 4.2.4. Diagnostics of plaques
  • 5. Challenges and future directions of BioBrillouin
  • 5.1. Signal-to-noise limit of spontaneous BLS
  • 5.2. Improvements in SNR and measurement speed
  • 5.3. Reconstruction of the full elastic modulus
  • 5.4. Miniaturization and fiber-based instrumentation
  • 6. Conclusion
  • References
  • Index.