Brillouin scattering. : Part 2 /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Massachusetts :
Academic Press,
[2022]
|
Colección: | Semiconductors and semimetals ;
Volume 110. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Brillouin Scattering Part 2
- Copyright
- Contents
- Contributors for Volume 2
- Preface
- List of symbols
- Chapter Seven: SBS-based fiber sensors
- 1. Background and historical perspective
- 1.1. Optical fiber sensors
- 1.2. Point, position-integrated and distributed sensors
- 1.3. Measurement parameters and metrics
- 1.4. Historical overview of Brillouin fiber sensors
- 2. Fundamentals
- 2.1. Effect of material composition
- 2.2. Effect of temperature
- 2.3. Effect of strain
- 2.4. Effect of hydrostatic pressure
- 2.5. Specificities of forward Brillouin scattering
- 3. Time-domain analysis and reflectometry
- 3.1. Brillouin optical time-domain analysis (B-OTDA)
- 3.2. Brillouin optical time-domain reflectometry (B-OTDR)
- 3.3. Performance metrics of time-domain Brillouin sensing protocols
- 3.3.1. Spatial resolution
- 3.3.2. Measurement accuracy of the Brillouin frequency shift
- 3.3.3. Sensing range
- 3.3.4. Acquisition duration
- 3.4. Optimization of standard Brillouin optical time domain analysis and reflectometry
- 3.4.1. Maximizing the signal
- 3.4.2. Minimizing the noise
- 3.5. Performance enhancement techniques
- 3.5.1. Circumventing the resolution limitations imposed by the acoustic lifetime
- 3.5.2. Increasing the equivalent energy of optical signals
- 3.5.3. Improving the frequency-scanning mechanism
- 4. Correlation-domain analysis and reflectometry
- 4.1. Brillouin-optical correlation-domain analysis
- 4.2. Brillouin optical correlation-domain reflectometry
- 4.3. Performance metrics, state-of-the-art and limitations
- 5. Inter-Modal Brillouin scattering sensors
- 6. Sensing with specialty fiber and waveguide platforms
- 7. Forward SBS sensors
- 7.1. Forward SBS in standard fibers
- 7.2. Principles of forward SBS sensing
- 7.3. Distributed analysis of forward SBS.
- 7.4. Coated fibers
- 8. Applications and employment
- 9. Conclusions
- References
- Chapter Eight: Brillouin-based radio frequency sources
- 1. Introduction
- 2. Background
- 2.1. Heterodyning of optical signals
- 3. Key performance metrics of radio frequency sources
- 4. Fiber-based SBS radio frequency sources
- 4.1. Generation of tunable RF frequencies with SBS based gains and losses
- 4.2. The generation of tunable RF frequencies with Brillouin fiber lasers
- 5. Optoelectronic-oscillators: Fiber- and chip-based approaches
- 6. RF sources based on high-Q-resonators
- 6.1. Microcavity Brillouin laser overview
- 6.2. Microcavity design for Brillouin laser action
- 6.3. Sources of phase noise in microcavity Brillouin lasers
- 6.4. A Brillouin microwave synthesizer
- 6.5. Brillouin frequency reference in electro-optical frequency division
- 7. Discussion and outlook
- Acknowledgments
- References
- Chapter Nine: Stimulated Brillouin scattering for microwave photonics
- 1. Challenges in microwave photonics
- 2. Brillouin scattering for microwave photonics
- 3. Microwave photonic filtering
- 4. Tunable phase shifters and delay lines
- 5. Frequency measurements
- 6. Perspectives and outlook
- References
- Chapter Ten: Integrated Brillouin lasers and their applications
- 1. Introduction
- 2. Phase noise and linewidth
- 2.1. Background
- 2.2. Parametric nature of Brillouin lasers
- 2.3. Pump frequency noise
- 2.4. Fundamental frequency noise (ST linewidth)
- 2.5. Frequency noise from Brillouin cascade
- 2.6. Integral linewidth, fractional frequency noise, and drift
- 3. Integrated Brillouin platforms
- 3.1. Brillouin gain in silicon nitride waveguides and silica resonators
- 3.2. Brillouin lasing in silicon nitride waveguides and silica resonators
- 3.3. Chalcogenide waveguides.
- 3.3.1. Stimulated Brillouin scattering in chalcogenide waveguides integrated on a chip
- 3.3.2. Characterization of Brillouin gain in chalcogenide on-chip waveguides
- 3.3.3. Narrow linewidth Brillouin laser based on chalcogenide photonic chip
- 3.4. Silicon
- 3.4.1. Brillouin processes in silicon waveguides
- 3.4.2. SBS amplification in silicon waveguides
- 3.4.3. Silicon SBS laser resonators
- 3.4.4. SBS lasing and performance
- 4. Cascaded mode operation
- 4.1. Phase lock cascaded
- 4.2. Multiple order generation in silicon nitride resonators
- 5. Mode engineering
- 6. Applications of on-chip Brillouin
- 6.1. Optical gyroscopes
- 6.2. Low-phase noise microwave oscillators
- 6.3. Visible light atom, molecular and quantum applications
- 6.4. Precision frequency synchronized fiber links
- 6.5. Coherent fiber optic communications
- References
- Chapter Eleven: SBS in optical communication systems: The good, the bad and the ugly
- 1. Introduction
- 1.1. Stimulated Brillouin scattering and optical communications
- 1.2. The optical communications context
- 1.3. Chapter outline
- 2. Early use of SBS in communications
- 3. Resurgence of SBS in optical communications
- 3.1. Non-coherent systems
- 3.2. Coherent systems
- 4. Future directions for SBS in optical communication networks
- References
- Chapter Twelve: Slow light, dynamic gratings, and light storage
- 1. Introduction
- 2. SBS slow light
- 2.1. Experimental implementations
- 3. Brillouin dynamic gratings
- 3.1. Physics of BDG formation and readout
- 3.2. Reconfigurable delay lines
- 4. SBS-based quasi-light storage
- 5. SBS-based light storage
- 6. Storage in optomechanical resonators
- 7. Discussion, summary, and outlook
- 7.1. Delay time
- 7.2. Application to optical data streams
- Acknowledgments
- References.
- Chapter Thirteen: Nonreciprocity in Brillouin scattering
- 1. Introduction
- 2. Nonreciprocity arising from Brillouin phase matching
- 2.1. Scattering regime
- 2.1.1. Nonreciprocal phase mismatch
- 2.1.2. Example: Intermodal Brillouin scattering
- 2.2. Stimulated gain regime
- 2.3. Induced transparency processes
- 3. Experimental platforms
- 3.1. Bulk and fiber media
- 3.2. Whispering gallery resonators
- 3.3. Integrated photonic systems
- Acknowledgments
- References
- Chapter Fourteen: Electromechanical Brillouin scattering
- 1. Electromechanical excitation of acoustic waves
- 1.1. Common piezoelectric materials
- 1.1.1. Lithium niobate
- 1.1.2. Zinc oxide
- 1.1.3. III-V materials
- 1.2. Generation of acoustic waves: Electromechanical transducers
- 1.2.1. Interdigital transducers
- 1.2.2. Bulk acoustic wave transducers
- 2. Brillouin scattering by electromechanically excited acoustic wave
- 2.1. Acoustic modes
- 2.1.1. Acoustic waveguide and cavity
- 2.1.2. Phononic crystal slab waveguide and cavity
- 2.2. Electromechanical Brillouin scattering
- 2.2.1. Physical effects
- 2.2.2. Phase-matching conditions
- 2.2.3. Electromechanical Brillouin scattering in different configurations
- 3. Applications
- 3.1. Next-generation acousto-optics
- 3.2. Nonreciprocal devices and circuits
- 3.3. Quantum transduction
- 3.4. Nano-opto-electro-mechanical (NOEM) platforms
- Acknowledgments
- References
- Chapter Fifteen: Brillouin light scattering in biological systems
- 1. Introduction to Brillouin light scattering in biological systems
- 2. History of Brillouin technology from spectroscopy to imaging
- 3. Key aspects of Brillouin light scattering in biological matter
- 3.1. The relation of Brillouin frequency shift to mechanical properties
- 3.2. The influence of hydration on Brillouin scattering.
- 4. Applications of Brillouin scattering to biology and medicine
- 4.1. Mechanobiology
- 4.2. Medical diagnostics
- 4.2.1. Ophthalmology
- 4.2.2. Cancer research and diagnostics
- 4.2.3. Bone and cartilage health
- 4.2.4. Diagnostics of plaques
- 5. Challenges and future directions of BioBrillouin
- 5.1. Signal-to-noise limit of spontaneous BLS
- 5.2. Improvements in SNR and measurement speed
- 5.3. Reconstruction of the full elastic modulus
- 5.4. Miniaturization and fiber-based instrumentation
- 6. Conclusion
- References
- Index.