|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_on1344544261 |
003 |
OCoLC |
005 |
20231120010702.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230114s2022 mau ob 001 0 eng d |
040 |
|
|
|a SFB
|b eng
|e rda
|e pn
|c SFB
|d OPELS
|d OCLCF
|d OCLCO
|
019 |
|
|
|a 1343047929
|
020 |
|
|
|a 0323989322
|
020 |
|
|
|a 9780323989329
|
020 |
|
|
|z 9780323989312
|
020 |
|
|
|z 0323989314
|
035 |
|
|
|a (OCoLC)1344544261
|z (OCoLC)1343047929
|
050 |
|
4 |
|a QC427.4
|b .B755 2022
|
082 |
0 |
4 |
|a 621.366
|2 23
|
245 |
0 |
0 |
|a Brillouin scattering. :
|b Part 2 /
|c edited by Benjamin J. Eggleton, Michael J. Steel, Chris Poulton.
|
264 |
|
1 |
|a Cambridge, Massachusetts :
|b Academic Press,
|c [2022]
|
264 |
|
4 |
|c �2022
|
300 |
|
|
|a 1 online resource (382 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Semiconductors and semimetals ;
|v Volume 110
|
505 |
0 |
|
|a Intro -- Brillouin Scattering Part 2 -- Copyright -- Contents -- Contributors for Volume 2 -- Preface -- List of symbols -- Chapter Seven: SBS-based fiber sensors -- 1. Background and historical perspective -- 1.1. Optical fiber sensors -- 1.2. Point, position-integrated and distributed sensors -- 1.3. Measurement parameters and metrics -- 1.4. Historical overview of Brillouin fiber sensors -- 2. Fundamentals -- 2.1. Effect of material composition -- 2.2. Effect of temperature -- 2.3. Effect of strain -- 2.4. Effect of hydrostatic pressure -- 2.5. Specificities of forward Brillouin scattering -- 3. Time-domain analysis and reflectometry -- 3.1. Brillouin optical time-domain analysis (B-OTDA) -- 3.2. Brillouin optical time-domain reflectometry (B-OTDR) -- 3.3. Performance metrics of time-domain Brillouin sensing protocols -- 3.3.1. Spatial resolution -- 3.3.2. Measurement accuracy of the Brillouin frequency shift -- 3.3.3. Sensing range -- 3.3.4. Acquisition duration -- 3.4. Optimization of standard Brillouin optical time domain analysis and reflectometry -- 3.4.1. Maximizing the signal -- 3.4.2. Minimizing the noise -- 3.5. Performance enhancement techniques -- 3.5.1. Circumventing the resolution limitations imposed by the acoustic lifetime -- 3.5.2. Increasing the equivalent energy of optical signals -- 3.5.3. Improving the frequency-scanning mechanism -- 4. Correlation-domain analysis and reflectometry -- 4.1. Brillouin-optical correlation-domain analysis -- 4.2. Brillouin optical correlation-domain reflectometry -- 4.3. Performance metrics, state-of-the-art and limitations -- 5. Inter-Modal Brillouin scattering sensors -- 6. Sensing with specialty fiber and waveguide platforms -- 7. Forward SBS sensors -- 7.1. Forward SBS in standard fibers -- 7.2. Principles of forward SBS sensing -- 7.3. Distributed analysis of forward SBS.
|
505 |
8 |
|
|a 7.4. Coated fibers -- 8. Applications and employment -- 9. Conclusions -- References -- Chapter Eight: Brillouin-based radio frequency sources -- 1. Introduction -- 2. Background -- 2.1. Heterodyning of optical signals -- 3. Key performance metrics of radio frequency sources -- 4. Fiber-based SBS radio frequency sources -- 4.1. Generation of tunable RF frequencies with SBS based gains and losses -- 4.2. The generation of tunable RF frequencies with Brillouin fiber lasers -- 5. Optoelectronic-oscillators: Fiber- and chip-based approaches -- 6. RF sources based on high-Q-resonators -- 6.1. Microcavity Brillouin laser overview -- 6.2. Microcavity design for Brillouin laser action -- 6.3. Sources of phase noise in microcavity Brillouin lasers -- 6.4. A Brillouin microwave synthesizer -- 6.5. Brillouin frequency reference in electro-optical frequency division -- 7. Discussion and outlook -- Acknowledgments -- References -- Chapter Nine: Stimulated Brillouin scattering for microwave photonics -- 1. Challenges in microwave photonics -- 2. Brillouin scattering for microwave photonics -- 3. Microwave photonic filtering -- 4. Tunable phase shifters and delay lines -- 5. Frequency measurements -- 6. Perspectives and outlook -- References -- Chapter Ten: Integrated Brillouin lasers and their applications -- 1. Introduction -- 2. Phase noise and linewidth -- 2.1. Background -- 2.2. Parametric nature of Brillouin lasers -- 2.3. Pump frequency noise -- 2.4. Fundamental frequency noise (ST linewidth) -- 2.5. Frequency noise from Brillouin cascade -- 2.6. Integral linewidth, fractional frequency noise, and drift -- 3. Integrated Brillouin platforms -- 3.1. Brillouin gain in silicon nitride waveguides and silica resonators -- 3.2. Brillouin lasing in silicon nitride waveguides and silica resonators -- 3.3. Chalcogenide waveguides.
|
505 |
8 |
|
|a 3.3.1. Stimulated Brillouin scattering in chalcogenide waveguides integrated on a chip -- 3.3.2. Characterization of Brillouin gain in chalcogenide on-chip waveguides -- 3.3.3. Narrow linewidth Brillouin laser based on chalcogenide photonic chip -- 3.4. Silicon -- 3.4.1. Brillouin processes in silicon waveguides -- 3.4.2. SBS amplification in silicon waveguides -- 3.4.3. Silicon SBS laser resonators -- 3.4.4. SBS lasing and performance -- 4. Cascaded mode operation -- 4.1. Phase lock cascaded -- 4.2. Multiple order generation in silicon nitride resonators -- 5. Mode engineering -- 6. Applications of on-chip Brillouin -- 6.1. Optical gyroscopes -- 6.2. Low-phase noise microwave oscillators -- 6.3. Visible light atom, molecular and quantum applications -- 6.4. Precision frequency synchronized fiber links -- 6.5. Coherent fiber optic communications -- References -- Chapter Eleven: SBS in optical communication systems: The good, the bad and the ugly -- 1. Introduction -- 1.1. Stimulated Brillouin scattering and optical communications -- 1.2. The optical communications context -- 1.3. Chapter outline -- 2. Early use of SBS in communications -- 3. Resurgence of SBS in optical communications -- 3.1. Non-coherent systems -- 3.2. Coherent systems -- 4. Future directions for SBS in optical communication networks -- References -- Chapter Twelve: Slow light, dynamic gratings, and light storage -- 1. Introduction -- 2. SBS slow light -- 2.1. Experimental implementations -- 3. Brillouin dynamic gratings -- 3.1. Physics of BDG formation and readout -- 3.2. Reconfigurable delay lines -- 4. SBS-based quasi-light storage -- 5. SBS-based light storage -- 6. Storage in optomechanical resonators -- 7. Discussion, summary, and outlook -- 7.1. Delay time -- 7.2. Application to optical data streams -- Acknowledgments -- References.
|
505 |
8 |
|
|a Chapter Thirteen: Nonreciprocity in Brillouin scattering -- 1. Introduction -- 2. Nonreciprocity arising from Brillouin phase matching -- 2.1. Scattering regime -- 2.1.1. Nonreciprocal phase mismatch -- 2.1.2. Example: Intermodal Brillouin scattering -- 2.2. Stimulated gain regime -- 2.3. Induced transparency processes -- 3. Experimental platforms -- 3.1. Bulk and fiber media -- 3.2. Whispering gallery resonators -- 3.3. Integrated photonic systems -- Acknowledgments -- References -- Chapter Fourteen: Electromechanical Brillouin scattering -- 1. Electromechanical excitation of acoustic waves -- 1.1. Common piezoelectric materials -- 1.1.1. Lithium niobate -- 1.1.2. Zinc oxide -- 1.1.3. III-V materials -- 1.2. Generation of acoustic waves: Electromechanical transducers -- 1.2.1. Interdigital transducers -- 1.2.2. Bulk acoustic wave transducers -- 2. Brillouin scattering by electromechanically excited acoustic wave -- 2.1. Acoustic modes -- 2.1.1. Acoustic waveguide and cavity -- 2.1.2. Phononic crystal slab waveguide and cavity -- 2.2. Electromechanical Brillouin scattering -- 2.2.1. Physical effects -- 2.2.2. Phase-matching conditions -- 2.2.3. Electromechanical Brillouin scattering in different configurations -- 3. Applications -- 3.1. Next-generation acousto-optics -- 3.2. Nonreciprocal devices and circuits -- 3.3. Quantum transduction -- 3.4. Nano-opto-electro-mechanical (NOEM) platforms -- Acknowledgments -- References -- Chapter Fifteen: Brillouin light scattering in biological systems -- 1. Introduction to Brillouin light scattering in biological systems -- 2. History of Brillouin technology from spectroscopy to imaging -- 3. Key aspects of Brillouin light scattering in biological matter -- 3.1. The relation of Brillouin frequency shift to mechanical properties -- 3.2. The influence of hydration on Brillouin scattering.
|
505 |
8 |
|
|a 4. Applications of Brillouin scattering to biology and medicine -- 4.1. Mechanobiology -- 4.2. Medical diagnostics -- 4.2.1. Ophthalmology -- 4.2.2. Cancer research and diagnostics -- 4.2.3. Bone and cartilage health -- 4.2.4. Diagnostics of plaques -- 5. Challenges and future directions of BioBrillouin -- 5.1. Signal-to-noise limit of spontaneous BLS -- 5.2. Improvements in SNR and measurement speed -- 5.3. Reconstruction of the full elastic modulus -- 5.4. Miniaturization and fiber-based instrumentation -- 6. Conclusion -- References -- Index.
|
588 |
|
|
|a Description based on print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Brillouin scattering.
|
650 |
|
6 |
|a Effet Brillouin.
|0 (CaQQLa)201-0016508
|
650 |
|
7 |
|a Brillouin scattering
|2 fast
|0 (OCoLC)fst00839002
|
700 |
1 |
|
|a Eggleton, Benjamin J.,
|e editor.
|
700 |
1 |
|
|a Steel, Michael J.,
|e editor.
|
700 |
1 |
|
|a Poulton, Christopher G.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a Eggleton, Benjamin J.
|t Brillouin Scattering Part 2
|d San Diego : Elsevier Science & Technology,c2022
|z 9780323989312
|
830 |
|
0 |
|a Semiconductors and semimetals ;
|v Volume 110.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00808784/110
|z Texto completo
|