Cargando…

Artificial neural networks for renewable energy systems and real-world applications

Artificial Neural Networks for Renewable Energy Systems and Real-World Applications presents current trends for the solution of complex engineering problems in the application, modeling, analysis, and optimization of different energy systems and manufacturing processes. With growing research caterin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Elsheikh, Ammar Hamed, Elasyed Abd Elaziz, Mohamed
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1344187765
003 OCoLC
005 20231120010703.0
006 m o d
007 cr |n|||||||||
008 220912s2022 enk o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d OCLCF  |d N$T  |d OCLCO 
020 |a 9780128231869  |q (electronic bk.) 
020 |a 0128231866  |q (electronic bk.) 
020 |z 9780128207932 
020 |z 0128207930 
035 |a (OCoLC)1344187765 
050 4 |a TJ808 
082 0 4 |a 333.794  |2 23 
245 0 0 |a Artificial neural networks for renewable energy systems and real-world applications  |h [electronic resource] /  |c edited by Ammar Hamed Elsheikh, Mohamed Elasyed Abd Elaziz. 
260 |a London :  |b Academic Press,  |c 2022. 
300 |a 1 online resource 
520 |a Artificial Neural Networks for Renewable Energy Systems and Real-World Applications presents current trends for the solution of complex engineering problems in the application, modeling, analysis, and optimization of different energy systems and manufacturing processes. With growing research catering to the applications of neural networks in specific industrial applications, this reference provides a single resource catering to a broader perspective of ANN in renewable energy systems and manufacturing processes. ANN-based methods have attracted the attention of scientists and researchers in different engineering and industrial disciplines, making this book a useful reference for all researchers and engineers interested in artificial networks, renewable energy systems, and manufacturing process analysis. 
650 0 |a Renewable energy sources. 
650 0 |a Neural networks (Computer science) 
650 6 |a �Energies renouvelables.  |0 (CaQQLa)201-0018247 
650 6 |a R�eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Renewable energy sources  |2 fast  |0 (OCoLC)fst01094570 
700 1 |a Elsheikh, Ammar Hamed. 
700 1 |a Elasyed Abd Elaziz, Mohamed. 
776 0 8 |i Print version:  |z 0128207930  |z 9780128207932  |w (OCoLC)1191237407 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128207932  |z Texto completo