Cargando…

Transcranial magnetic and electrical brain stimulation for neurological disorders /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zohuri, Bahman
Otros Autores: McDaniel, Patrick J.
Formato: eBook
Idioma:Inglés
Publicado: London, UK : Academic Press, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • TRANSCRANIAL MAGNETIC AND ELECTRICAL BRAIN STIMULATION FOR NEUROLOGICAL DISORDERS
  • TRANSCRANIAL MAGNETIC AND ELECTRICAL BRAIN STIMULATION FOR NEUROLOGICAL DISORDERS
  • Copyright
  • Dedication
  • Contents
  • About the authors
  • Preface
  • Acknowledgment
  • 1
  • Foundation of electromagnetic theory
  • 1.1 Introduction
  • 1.2 Vector analysis
  • 1.2.1 Vector algebra
  • 1.2.1.1 Sum of two vectors
  • 1.2.1.2 Subtraction of two vectors
  • 1.2.1.3 Multiplication of two vectors
  • 1.2.2 Scalar product of two vectors
  • 1.2.3 Vector product of two vectors
  • 1.2.3.1 Devision of two vectors
  • 1.2.4 Vector gradient
  • 1.2.5 Vector integration
  • 1.2.6 Vector divergence
  • 1.2.7 Vector curl
  • 1.2.8 Vector differential operator
  • 1.3 Further developments
  • 1.4 Electrostatics
  • 1.4.1 The Coulomb's law
  • 1.4.2 The electric field
  • 1.4.3 The Gauss's law
  • 1.5 Solution of electrostatics problems
  • 1.5.1 Poisson's equation
  • 1.5.1.1 Rectangular or cartesian coordinate
  • 1.5.1.2 Cylindrical coordinate
  • 1.5.1.3 Spherical coordinate
  • 1.5.2 Laplace's equation
  • 1.6 Electrostatics energy
  • 1.6.1 Potential energy of a group of point charges
  • 1.6.2 Electrostatic energy of a charge distribution
  • 1.6.3 Forces and torques
  • 1.6.3.1 The rate of energy transfer (per unit volume) from a region of space equals the rate of work done on a charge distribution ...
  • 1.7 Mx's equations
  • 1.8 The Law of Biot and Savart
  • 1.9 The lorentz transformation
  • 1.10 Electric field of a moving charge
  • 1.11 Interaction between two moving charges
  • 1.12 Elementary applications of the Biot and Savart Law
  • 1.12.1 Example
  • one
  • 1.12.2 Example
  • two
  • 1.12.3 Example
  • three
  • 1.12.4 Example
  • four
  • 1.12.5 The infinite filament wire application of Biot-Savart law
  • 1.12.5.1 Example
  • one
  • 1.12.5.2 Example
  • two
  • 1.13 A's law
  • 1.13.1 Example
  • one
  • 1.13.2 Example
  • two
  • 1.13.3 Example
  • three
  • 1.13.4 Example
  • four
  • 1.13.5 Example
  • five
  • 1.13.6 A's law in point form
  • 1.13.6.1 Example
  • one
  • 1.14 Scalar and vector potentials
  • 1.15 Hall effect
  • References
  • 2
  • All about wave equations
  • 2.1 Introduction
  • 2.2 The classical wave equation and separation of variables
  • 2.3 Standing waves
  • 2.4 Seiche wave
  • 2.4.1 Lake seiche
  • 2.4.2 Sea and Bay seiche
  • 2.5 Underwater or internal waves
  • 2.6 Maxwell's equations and electromagnetic waves
  • 2.7 Scalar and vector potentials
  • 2.8 Gauge transformations, Lorentz gauge, and Coulomb gauge
  • 2.9 Infrastructure, characteristic, derivation, and properties of scalar waves
  • 2.9.1 Derivation of the scalar waves
  • 2.9.1.1 Near-field difficulties
  • 2.9.1.2 Far-filed transition
  • 2.9.1.3 Scalar wave model
  • 2.9.1.4 Double-frequent oscillation of size
  • 2.9.1.5 Electric and magnetic scalar wave
  • 2.9.1.6 Scalar wave properties
  • 2.9.1.7 Comparison of the parts of Tesla and Hertz