Cargando…

Applications of nanotechnology in drug delivery and delivery /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Egbuna, Chukwuebuka
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Colección:Drug discovery update
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Applications of Nanotechnology in Drug Discovery and Delivery
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Fundamentals, Trends and Advances in Nanotechnology
  • 1 Roles of nanoparticles in drug discovery and delivery
  • 1.1 Introduction
  • 1.2 Types of nanoparticles
  • 1.2.1 Lipid nanoparticles
  • 1.2.2 Polymer-based nanoparticles
  • 1.2.3 Inorganic component-based nanoparticles
  • 1.3 Application of nanoparticles
  • 1.3.1 Drug release profile
  • 1.3.2 Gene delivery
  • 1.3.3 Pulmonary delivery
  • 1.3.4 Antimicrobial delivery
  • 1.3.5 Brain targeting
  • 1.3.6 Pharmacokinetics and biodistribution
  • 1.3.7 Mucoadhesive delivery
  • 1.3.8 Skin delivery
  • 1.3.9 Macrophage uptake
  • 1.3.10 Nanotheranostics
  • 1.4 Summary and conclusion
  • References
  • 2 Nanoencapsulation of nutraceuticals and dietary supplements for effective delivery
  • 2.1 Introduction
  • 2.2 Nutraceuticals
  • 2.3 Nanoencapsulation of nutraceuticals and dietary supplements
  • 2.4 Nanoencapsulation techniques for nutraceuticals
  • 2.4.1 Emulsification technique
  • 2.4.2 Nanoprecipitation technique
  • 2.4.3 Coacervation technique
  • 2.5 Encapsulated nutraceuticals for drug delivery
  • 2.5.1 Nanoemulsions
  • 2.5.2 Polymeric nanoparticles
  • 2.5.3 Magnetic nanoparticles
  • 2.5.4 Nanoliposomes
  • 2.5.5 Nanophytosomes
  • 2.6 Conclusion
  • Abbreviations
  • References
  • 3 Nanoformulation of antioxidant supplements
  • 3.1 Introduction
  • 3.2 Nanoformulations methods
  • 3.2.1 Emulsion solvent evaporation method
  • 3.2.2 Solvent displacement method
  • 3.2.3 Supercritical fluid technology
  • 3.2.4 Template synthesis method
  • 3.2.5 Chemical precipitation technique
  • 3.2.6 Nanoprecipitation
  • 3.3 Nanoformulations for antioxidants
  • 3.3.1 Natural or plant-derived nanoantioxidants
  • 3.3.1.1 Nanocurcumin
  • 3.3.1.2 Nanoepigallocatechin-3-gallate.
  • 3.3.1.3 Nanogenistein
  • 3.3.1.4 Nanoquercetin
  • 3.3.1.5 Nanoresveratrol
  • 3.3.1.6 Nanorosmarinic acid
  • 3.3.2 Chemical and synthetic nanoantioxidants
  • 3.3.2.1 Silica nanoparticles
  • 3.3.2.2 Gold nanoparticles
  • 3.3.2.3 Silver nanoparticles
  • 3.3.2.4 Iron oxide magnetic nanoparticles
  • 3.3.2.5 Cerium oxide nanoparticles
  • 3.3.2.6 Dual nanoantioxidant
  • 3.3.2.7 Polymeric nanoantioxidant
  • 3.3.2.8 Metal nanoantioxidants
  • 3.4 Antioxidants in nanomedicine
  • 3.4.1 Vitamin C
  • 3.4.2 Vitamin E
  • 3.4.3 Beta-carotene
  • 3.4.4 Selenium
  • 3.5 Advantages and disadvantages of nanofomulation of antioxidant supplements
  • 3.6 Future perspective and conclusion
  • Abbreviations
  • References
  • 4 Nanophytomedicines: nature to medicines
  • 4.1 Introduction
  • 4.2 Nanophytomedicines
  • 4.3 Therapeutic potentials of nanophytomedicine
  • 4.4 Nanophytomedicines with improved target binding ability
  • 4.5 Nanophytomedicines and their oral bioavailability
  • 4.6 Nanophytomedicine with improved safety
  • 4.7 Toxicity of nanophytomedicine
  • 4.8 Regulatory aspects and ethical issues associated with nanophytomedicine
  • 4.9 Challenges encountered in nanophytomedicine
  • 4.10 Current progress and future prospects
  • 4.11 Conclusion
  • References
  • 5 Characterization of nanoparticles: methods and techniques
  • 5.1 Introduction
  • 5.2 Differential scanning calorimetry
  • 5.3 Fourier transform infrared spectroscopy
  • 5.4 Scanning electron microscopy
  • 5.5 Transmission electron microscopy
  • 5.6 X-Ray diffraction
  • 5.7 Encapsulation efficiency, drug-loading capacity, and percentage of recovery
  • 5.8 Topical nanoparticle strategies
  • 5.9 Drug release studies of nanoparticles
  • 5.9.1 Drug release study of nanoparticles for oral dosage forms
  • 5.9.2 Drug release study of nanoparticles for topical dosage forms
  • 5.10 Solubility of nanoparticles.
  • 5.11 Toxicity effects of nanoparticles
  • 5.11.1 In vitro toxicity effect
  • 5.11.1.1 In vivo toxicity effect for topical administration of nanoparticles
  • 5.11.1.2 In vivo toxicity effects for oral administration of nanoparticles
  • 5.12 Stability enhancement of nanoparticles
  • 5.13 Future projection and conclusion
  • References
  • 2 Nanopharmaceutical Applications In Clinical Practice
  • 6 Applications of nanotechnology in pharmaceutical products
  • 6.1 Introduction
  • 6.2 Comparison of traditional and nanodrug delivery
  • 6.2.1 Essentials of drug delivery system
  • 6.2.2 Conventional versus novel drug delivery system
  • 6.2.3 Carrier-based drug delivery system
  • 6.2.4 Nanodrug delivery system as a carrier-based drug delivery system
  • 6.3 Pharmaceutical products through nanotechnology
  • 6.3.1 Classification of nanopharmaceutical products
  • 6.3.1.1 Nanomaterials
  • 6.3.1.2 Nanodevices
  • 6.4 Applications of nanotechnology in pharmaceutical processes
  • 6.4.1 Drug delivery
  • 6.4.2 Gene therapy
  • 6.4.3 Medical diagnosis
  • 6.4.4 Drug discovery
  • 6.4.5 Other novel applications
  • 6.5 Challenges in nanotechnology-based drug delivery system
  • 6.6 Conclusion and future perspectives
  • References
  • 7 Advances in nanotechnology for drug discovery and design
  • 7.1 Introduction
  • 7.2 Nanomaterials, nanotechnology, and nanobiotechnology
  • 7.2.1 Nanomaterials
  • 7.2.2 Nanotechnology
  • 7.2.3 Nanobiotechnology
  • 7.3 Role of nanotechnology and nanobiotechnology in biomedicine
  • 7.3.1 Biopolymer nanoparticles
  • 7.3.2 Protein and polysaccharide nanoparticles
  • 7.3.3 Liposomes
  • 7.3.4 Polymeric micelles
  • 7.3.5 Nanocrystals
  • 7.3.6 Quantum dots
  • 7.3.7 Dendrimers
  • 7.3.8 Metallic nanoparticles
  • 7.4 Hurdles and challenges
  • 7.5 Future perspectives
  • 7.6 Summary and conclusion
  • References
  • Further reading.
  • 8 Nanomedicine for diabetes mellitus management
  • 8.1 Introduction
  • 8.2 Type 1 diabetes mellitus and nanomedicine
  • 8.3 Type 2 diabetes mellitus and nanomedicine
  • 8.4 Insulin delivery and nanotechnology
  • 8.4.1 Polymeric nanoparticles
  • 8.4.2 Ceramic nanoparticles
  • 8.4.3 Polymeric micelles
  • 8.4.4 Dendrimers
  • 8.4.5 Liposomes
  • 8.4.6 Other nanoparticles
  • 8.5 Nanopumps
  • 8.6 Insulin delivery via inhalation
  • 8.7 Transplanted pancreatic islets nanoencapsulation
  • 8.8 Biological microelectromechanical systems for insulin delivery
  • 8.9 Nanotechnology in noninsulin remedy
  • 8.9.1 Artificial pancreas
  • 8.9.2 Nanopore immunoisolation tools
  • 8.9.3 Nanorobotics
  • 8.10 Nanotechnology applications in the management of diabetes-related complications
  • 8.10.1 Nanotechnology in diabetic retinopathy
  • 8.10.2 Nanotechnology in diabetes-induced foot ulcers
  • 8.10.3 Nanotechnology in other diabetes-associated complications
  • 8.11 Advantages of using nanotechnology in diabetes mellitus management
  • 8.12 Limitations in using nanotechnology in diabetes mellitus management
  • 8.13 Conclusion
  • References
  • 9 Nanotechnological application of peptide- and protein-based therapeutics
  • 9.1 Introduction
  • 9.2 Benefits of peptide and protein therapeutics in biomedicine
  • 9.3 Challenges with peptide- and protein-based therapeutics
  • 9.4 Excipients used in synthesis of protein and peptide nanoparticles
  • 9.4.1 Gliadin
  • 9.4.2 Milk protein
  • 9.4.3 Legumin
  • 9.4.4 Elastin
  • 9.4.5 Albumin
  • 9.4.6 Gelatin
  • 9.4.7 Zein
  • 9.4.8 Soy protein
  • 9.5 Therapeutic and diagnostic applications of protein-based therapeutics nanomaterials
  • 9.5.1 Therapeutic application
  • 9.5.1.1 Ocular disease applications
  • 9.5.1.2 Application in cancer treatment
  • 9.5.1.3 Applications of nanoparticles of protein-based therapeutics in treatment of other diseases.
  • 9.5.2 Diagnostic applications
  • 9.5.2.1 Magnetic nanoparticles
  • 9.5.2.2 Carbon nanotubes and gold nanoparticles
  • 9.5.2.3 Other diagnostics using protein-based therapeutic nanoparticles
  • 9.6 Improving stability using protein-based therapeutics nanoparticles
  • 9.6.1 Physical stability enhancement
  • 9.6.2 Biological stability improvement
  • 9.7 Evaluation parameters and formulation techniques for protein/peptide nanoparticles
  • 9.7.1 Emulsification method
  • 9.7.2 Desolvation method
  • 9.7.3 Electrospray method
  • 9.7.4 Complex coacervation method
  • 9.8 Biomedical applications of nanoparticles of proteins and peptides
  • 9.8.1 Routes
  • 9.8.1.1 Oral route
  • 9.8.1.2 Blood-brain barrier routes
  • 9.8.1.3 Nasal route
  • 9.8.1.4 Pulmonary route
  • 9.8.2 Antibiotics
  • 9.8.3 Delivery of nonviral gene
  • 9.8.4 Immunological adjuvant
  • 9.8.5 Treatment of diseases
  • 9.9 Concerns about peptide- and protein-based nanoparticles
  • 9.10 Future prospects
  • 9.11 Conclusion
  • Abbreviations
  • References
  • 10 Nanodrug delivery systems in cancer therapy
  • 10.1 Introduction
  • 10.2 Currently available conventional cancer therapy
  • 10.3 Drug delivery systems
  • 10.4 Drug carriers
  • 10.4.1 Types of drug carriers
  • 10.4.1.1 Microspheres
  • 10.4.1.2 Polymeric micelles
  • 10.4.1.3 Liposomes
  • 10.4.1.4 Nanodiamonds
  • 10.4.1.5 Nanofibers
  • 10.5 Protein nanoparticles
  • 10.6 Anticancer nanoparticle drugs
  • 10.7 Application of nanodrug delivery systems
  • 10.8 Drawbacks of using nanodrug delivery
  • 10.9 Conclusion and future perspectives
  • References
  • 11 Nanotechnology interventions in neuroscience: current perspectives and strategies
  • 11.1 Introduction
  • 11.2 Nanotechnology in neuroimaging
  • 11.3 Nanotechnology in neurodiagnostic
  • 11.4 Nanotechnology in neurological devices.