Cargando…

Advances in microbe-assisted phytoremediation of polluted sites

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bauddh, Kuldeep, Ma, Ying
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • PART 1
  • Overview of microbe-assisted phytoremediation
  • Chapter 1
  • Microbe-assisted phytoremediation of environmental contaminants
  • 1.1 Introduction
  • 1.2 Environmental contaminants: Types, nature, and sources
  • 1.3 Impact of environmental contaminants on the environment and human health
  • 1.4 Plant-microbe association/interaction and its role in phytoremediation of environmental contaminants
  • 1.4.1 Phytoremediation of organic and inorganic contaminants
  • 1.4.2 Phytoremediation of wastewater
  • 1.4.3 Role of constructed wetlands in treatment of wastewaters
  • 1.5 Mechanisms involved in the phytoremediation of environmental contaminants
  • 1.5.1 Phytostabilization
  • 1.5.2 Phytovolatilization
  • 1.5.3 Phytodegradation
  • 1.5.4 Phytoaccumulation
  • 1.5.5 Phytoextraction
  • 1.5.6 Rhizoremediation
  • 1.5.6.1 Plant growth promoting rhizobacteria (PGPR)
  • 1.5.6.2 Arbuscular mycorrhizal fungi
  • 1.6 Economic importance of microbe assisted phytoremediation of environmental contaminants
  • 1.7 Conclusion
  • References
  • Chapter 2
  • Microbial augmented phytoremediation with improved ecosystems services
  • 2.1 Introduction
  • 2.2 Concept of phytoremediation
  • 2.3 Need of augmentation of substances in phytoremediation
  • 2.3.1 Chemical augmentation
  • 2.3.2 Biological augmentation
  • 2.4 Role of microbes in soil ecosystem
  • 2.4.1 Nutrient bioavailability in the soil
  • 2.4.2 Contaminant bioavailability in the soil
  • 2.4.3 Stress tolerance
  • 2.4.3.1 Role of microbes in plants tolerance to drought
  • 2.4.3.2 Role of microbes in plants tolerance to salinity stress
  • 2.4.3.3 Role of microbes in plants tolerance to temperature stress
  • 2.4.4 Biocontrol of pathogens
  • 2.4.5 Microbes enhances overall plant growth.
  • 2.5 Mechanism of microbe-assisted phytoremediation
  • 2.6 Conclusion and future recommendation
  • References
  • Chapter 3
  • Role of genetic engineering in microbe-assisted phytoremediation of polluted sites
  • 3.1 Introduction
  • 3.2 Microbe-assisted phytoremediation
  • 3.2.1 Mechanism of phytoremediation using microorganism
  • 3.2.1.1 Direct mechanism
  • 3.2.1.2 Indirect mechanism
  • 3.2.2 Advantages of microbe-assisted phytoremediation
  • 3.3 Genetic engineering of microbes for assisting phytoremediation
  • 3.3.1 Plant growth-promoting bacteria
  • 3.3.2 Rhizospheric bacteria
  • 3.3.3 Endophytic bacteria
  • 3.4 Genetic engineering of plants for microbe-assisted phytoremediation
  • 3.4.1 Engineering plants to enhance growth
  • 3.4.2 Rhizosphere competence
  • 3.4.3 Examining effects of the root targeted modification
  • 3.5 Conclusions and future prospects
  • Acknowledgments
  • References
  • Chapter 4
  • Phytoremediation potential of genetically modified plants
  • 4.1 Introduction
  • 4.2 Heavy metal contamination
  • 4.3 Technologies used in the remediation of HMs
  • 4.3.1 Excavation
  • 4.3.2 Composting
  • 4.3.3 Electrokinetic remediation (EKR)
  • 4.3.4 Bioreactors
  • 4.4 Phytoremediation
  • 4.5 Factors affecting phytoremediation
  • 4.6 Advantages and disadvantages of phytoremediation
  • 4.7 Role of genetic engineering in phytoremediation
  • 4.8 Conclusion and future prospects
  • References
  • PART 2
  • Microbe-assisted phytoremediation of inorganic contaminants
  • chapter 5
  • The role of bacteria in metal bioaccumulation and biosorption
  • 5.1 Introduction
  • 5.2 Microbial bioremediation
  • 5.2.1 Biosorption
  • 5.2.1.1 Extracellular adsorption
  • 5.2.1.2 Cell surface adsorption
  • 5.2.2 Bioaccumulation
  • 5.3 Mechanisms underlying microbial metal biosorption and bioaccumulation
  • 5.3.1 Extracellular adsorption.
  • 5.3.2 Cell surface adsorption or complexation
  • 5.3.2.1 Ion exchange mechanism
  • 5.3.2.2 Surface complex mechanism
  • 5.3.2.3 Bioaccumulation/Intracellular adsorption
  • 5.4 Main factors influencing the bioaccumulation efficiency
  • 5.4.1 pH
  • 5.4.2 Temperature
  • 5.4.3 The presence of other metal ions
  • 5.4.4 Physical and chemical pretreatment
  • 5.5 General conclusions and future perspectives
  • Acknowledgments
  • References
  • Chapter 6
  • Plant-microbe association to improve phytoremediation of heavy metal
  • 6.1 Introduction
  • 6.1.1 Phytoremediation
  • 6.2 Metal resistance and uptake in microorganisms
  • 6.3 Plant growth and metal uptake by plant growth-promoting bacteria (PGPB)
  • 6.3.1 Phytoremediation assisted by soil bacteria
  • 6.3.2 Effects of microorganisms on bioavailability of metals/metalloids and mobilization
  • 6.3.3 Low-molecular-mass organic acids
  • 6.3.4 Release of carboxylic acid anions
  • 6.3.5 By secretion of siderophores
  • 6.3.6 Other trace element chelators
  • 6.3.7 Microbial-induced metal immobilization in phytostabilization
  • 6.4 Effects of microorganisms on nutrients' uptake
  • 6.5 Approach of genetic engineering for improved metal uptake
  • 6.6 Current scenario and future perspective
  • References
  • Chapter 7
  • Bacterial-mediated phytoremediation of heavy metals
  • 7.1 Introduction
  • 7.2 Heavy metals effects on living organisms
  • 7.3 Remediation strategies to reduce the HM pollutants
  • 7.3.1 Physicochemical approaches
  • 7.3.2 Biological approaches/bioremediation
  • 7.4 Phytoremediation
  • 7.4.1 Phytoextraction
  • 7.4.2 Phytostabilization
  • 7.4.3 Phytodegradation
  • 7.4.4 Phytovolatilization
  • 7.4.5 Phytofiltration
  • 7.4.6 Rhizodegradation
  • 7.4.7 Phytotransformation
  • 7.5 Microbial remediation
  • 7.5.1 Fungal remediation
  • 7.5.2 Bacterial remediation.
  • 7.6 Mechanisms of bacterial-assisted phytoremediation
  • 7.6.1 Plant growth promotion
  • 7.6.2 Bacterial-assisted biodegradation
  • 7.6.3 Biotransformation of HM
  • 7.6.4 Bioleaching
  • 7.6.5 Mobilization
  • 7.6.6 Solubilization
  • 7.6.7 Volatilization
  • 7.6.8 Sequestration/accumulation
  • 7.7 Case studies of PGP bacteria-assisted phytoremediation
  • References
  • Chapter 8
  • Recent advances in microbial-aided phytostabilization of trace element contaminated soils
  • 8.1 Introduction
  • 8.2 Phytostabilization
  • 8.2.1 TE behavior in soils
  • speciation and mobility
  • 8.2.2 TE uptake and transfer in plant tissues
  • 8.2.3 Plant tolerance to TE toxicity
  • 8.2.4 Plant's selection
  • 8.3 Aided phytostabilization
  • 8.3.1 Effect of microbial amendments on soil properties
  • 8.3.2 Microbial amendment's effect on TE immobilization.
  • 8.3.3 Microbial amendment's effect on plant growth and development
  • 8.3.4 Combined use of amendments
  • 8.4 Future scope
  • 8.4.1 Limitations of aided phytostabilisation
  • 8.4.2 Future scope: Phytomanagement of TE-contaminated soils
  • 8.5 Conclusion
  • Acknowledgments
  • References
  • Chapter 9
  • Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fungi
  • 9.1 Introduction
  • 9.2 Sources of HMs in soil
  • 9.2.1 Natural processes
  • 9.2.2 Anthropogenic processes
  • 9.3 Adverse impacts of HMs
  • 9.3.1 Impacts on the environment
  • 9.3.2 Impact on the soil microbes and its enzymatic activity
  • 9.3.3 Impact on the plants and animals
  • 9.3.4 Impact on human health
  • 9.4 Remediation of metal contaminated soil
  • 9.4.1 Phytoremediation
  • 9.5 Arbuscular mycorrhizal fungi
  • 9.5.1 AMF as mediators of phytoremediation processes
  • 9.5.2 Mechanisms of detoxification involving the association of mycorrhizal fungi and plants.
  • 9.5.3 Mechanisms involving the retention by fungal structures
  • 9.6 Biochemical mechanisms
  • 9.6.1 Chelating agents and enzymes
  • 9.6.2 Gene expression mediated by AMF
  • 9.7 Conclusion
  • References
  • chapter 10
  • Role of Pb-solubilizing and plant growth-promoting bacteria in Pb uptake by plants
  • 10.1 Introduction
  • 10.2 Presence and forms of Pb in soil
  • 10.3 Phytoextraction of Pb from contaminated soils
  • 10.4 Microbe-assisted Pb phytoextraction
  • 10.5 Pb solubilization mechanisms by bacteria
  • 10.5.1 Acidolysis
  • 10.5.2 Redoxolysis
  • 10.5.2.1 Bio-reduction
  • 10.5.2.2 Bio-oxidation
  • 10.5.3 Complexolysis
  • 10.5.3.1 Low molecular weight organic acids
  • 10.5.3.2 Siderophores
  • 10.5.3.3 Biosurfactants
  • 10.6 Effect of bacteria on plant growth in Pb-contaminated soils
  • 10.6.1 Production of phytohormones
  • 10.6.1.1 Auxins
  • 10.6.1.2 Cytokinins
  • 10.6.1.3 Gibberellins
  • 10.6.2 Improvement of plant nutrition
  • 10.6.2.1 Phosphorus solubilization
  • 10.6.2.2 Siderophore production
  • 10.6.2.3 Nitrogen fixation
  • 10.6.2.4 Improvement of nutrient uptake
  • 10.6.3 ACCD production
  • 10.6.4 Triggering plant antioxidant system
  • 10.7 Effects of bacterial inoculations on Pb phytoextraction
  • 10.7.1 Effects of PGPBs on Pb phytoextraction
  • 10.7.2 Effects of Pb-solubilizing PGPBs on Pb phytoextraction
  • 10.8 Conclusions
  • References
  • Chapter 11
  • Role of Cd-resistant plant growth-promoting rhizobacteria in plant growth promotion and alleviation of the p ...
  • 11.1 Introduction
  • 11.1.1 Plant growth promoting rhizobacteria and their classification
  • 11.1.2 Loading of Cd in the environment
  • 11.1.3 Toxic effects of Cd on plants, humans, and microorganisms
  • 11.2 Cadmium-resistant PGPR
  • 11.3 Cadmium-resistance mechanisms in PGPR
  • 11.3.1 Cd removal by several efflux systems.