Cargando…

Advances in microbe-assisted phytoremediation of polluted sites

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bauddh, Kuldeep, Ma, Ying
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1338832065
003 OCoLC
005 20231120010657.0
006 m o d
007 cr |n|||||||||
008 220807s2022 ne o 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d SFB  |d N$T  |d OCLCF  |d UKAHL  |d OCLCQ 
020 |a 9780128235300  |q (electronic bk.) 
020 |a 0128235306  |q (electronic bk.) 
020 |z 9780128234433 
020 |z 0128234431 
035 |a (OCoLC)1338832065 
050 4 |a TD192.75 
082 0 4 |a 628.55  |2 23 
245 0 0 |a Advances in microbe-assisted phytoremediation of polluted sites  |h [electronic resource] /  |c edited by Kuldeep Bauddh and Ying Ma. 
260 |a Amsterdam :  |b Elsevier,  |c 2022. 
300 |a 1 online resource 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- PART 1 -- Overview of microbe-assisted phytoremediation -- Chapter 1 -- Microbe-assisted phytoremediation of environmental contaminants -- 1.1 Introduction -- 1.2 Environmental contaminants: Types, nature, and sources -- 1.3 Impact of environmental contaminants on the environment and human health -- 1.4 Plant-microbe association/interaction and its role in phytoremediation of environmental contaminants -- 1.4.1 Phytoremediation of organic and inorganic contaminants -- 1.4.2 Phytoremediation of wastewater -- 1.4.3 Role of constructed wetlands in treatment of wastewaters -- 1.5 Mechanisms involved in the phytoremediation of environmental contaminants -- 1.5.1 Phytostabilization -- 1.5.2 Phytovolatilization -- 1.5.3 Phytodegradation -- 1.5.4 Phytoaccumulation -- 1.5.5 Phytoextraction -- 1.5.6 Rhizoremediation -- 1.5.6.1 Plant growth promoting rhizobacteria (PGPR) -- 1.5.6.2 Arbuscular mycorrhizal fungi -- 1.6 Economic importance of microbe assisted phytoremediation of environmental contaminants -- 1.7 Conclusion -- References -- Chapter 2 -- Microbial augmented phytoremediation with improved ecosystems services -- 2.1 Introduction -- 2.2 Concept of phytoremediation -- 2.3 Need of augmentation of substances in phytoremediation -- 2.3.1 Chemical augmentation -- 2.3.2 Biological augmentation -- 2.4 Role of microbes in soil ecosystem -- 2.4.1 Nutrient bioavailability in the soil -- 2.4.2 Contaminant bioavailability in the soil -- 2.4.3 Stress tolerance -- 2.4.3.1 Role of microbes in plants tolerance to drought -- 2.4.3.2 Role of microbes in plants tolerance to salinity stress -- 2.4.3.3 Role of microbes in plants tolerance to temperature stress -- 2.4.4 Biocontrol of pathogens -- 2.4.5 Microbes enhances overall plant growth. 
505 8 |a 2.5 Mechanism of microbe-assisted phytoremediation -- 2.6 Conclusion and future recommendation -- References -- Chapter 3 -- Role of genetic engineering in microbe-assisted phytoremediation of polluted sites -- 3.1 Introduction -- 3.2 Microbe-assisted phytoremediation -- 3.2.1 Mechanism of phytoremediation using microorganism -- 3.2.1.1 Direct mechanism -- 3.2.1.2 Indirect mechanism -- 3.2.2 Advantages of microbe-assisted phytoremediation -- 3.3 Genetic engineering of microbes for assisting phytoremediation -- 3.3.1 Plant growth-promoting bacteria -- 3.3.2 Rhizospheric bacteria -- 3.3.3 Endophytic bacteria -- 3.4 Genetic engineering of plants for microbe-assisted phytoremediation -- 3.4.1 Engineering plants to enhance growth -- 3.4.2 Rhizosphere competence -- 3.4.3 Examining effects of the root targeted modification -- 3.5 Conclusions and future prospects -- Acknowledgments -- References -- Chapter 4 -- Phytoremediation potential of genetically modified plants -- 4.1 Introduction -- 4.2 Heavy metal contamination -- 4.3 Technologies used in the remediation of HMs -- 4.3.1 Excavation -- 4.3.2 Composting -- 4.3.3 Electrokinetic remediation (EKR) -- 4.3.4 Bioreactors -- 4.4 Phytoremediation -- 4.5 Factors affecting phytoremediation -- 4.6 Advantages and disadvantages of phytoremediation -- 4.7 Role of genetic engineering in phytoremediation -- 4.8 Conclusion and future prospects -- References -- PART 2 -- Microbe-assisted phytoremediation of inorganic contaminants -- chapter 5 -- The role of bacteria in metal bioaccumulation and biosorption -- 5.1 Introduction -- 5.2 Microbial bioremediation -- 5.2.1 Biosorption -- 5.2.1.1 Extracellular adsorption -- 5.2.1.2 Cell surface adsorption -- 5.2.2 Bioaccumulation -- 5.3 Mechanisms underlying microbial metal biosorption and bioaccumulation -- 5.3.1 Extracellular adsorption. 
505 8 |a 5.3.2 Cell surface adsorption or complexation -- 5.3.2.1 Ion exchange mechanism -- 5.3.2.2 Surface complex mechanism -- 5.3.2.3 Bioaccumulation/Intracellular adsorption -- 5.4 Main factors influencing the bioaccumulation efficiency -- 5.4.1 pH -- 5.4.2 Temperature -- 5.4.3 The presence of other metal ions -- 5.4.4 Physical and chemical pretreatment -- 5.5 General conclusions and future perspectives -- Acknowledgments -- References -- Chapter 6 -- Plant-microbe association to improve phytoremediation of heavy metal -- 6.1 Introduction -- 6.1.1 Phytoremediation -- 6.2 Metal resistance and uptake in microorganisms -- 6.3 Plant growth and metal uptake by plant growth-promoting bacteria (PGPB) -- 6.3.1 Phytoremediation assisted by soil bacteria -- 6.3.2 Effects of microorganisms on bioavailability of metals/metalloids and mobilization -- 6.3.3 Low-molecular-mass organic acids -- 6.3.4 Release of carboxylic acid anions -- 6.3.5 By secretion of siderophores -- 6.3.6 Other trace element chelators -- 6.3.7 Microbial-induced metal immobilization in phytostabilization -- 6.4 Effects of microorganisms on nutrients' uptake -- 6.5 Approach of genetic engineering for improved metal uptake -- 6.6 Current scenario and future perspective -- References -- Chapter 7 -- Bacterial-mediated phytoremediation of heavy metals -- 7.1 Introduction -- 7.2 Heavy metals effects on living organisms -- 7.3 Remediation strategies to reduce the HM pollutants -- 7.3.1 Physicochemical approaches -- 7.3.2 Biological approaches/bioremediation -- 7.4 Phytoremediation -- 7.4.1 Phytoextraction -- 7.4.2 Phytostabilization -- 7.4.3 Phytodegradation -- 7.4.4 Phytovolatilization -- 7.4.5 Phytofiltration -- 7.4.6 Rhizodegradation -- 7.4.7 Phytotransformation -- 7.5 Microbial remediation -- 7.5.1 Fungal remediation -- 7.5.2 Bacterial remediation. 
505 8 |a 7.6 Mechanisms of bacterial-assisted phytoremediation -- 7.6.1 Plant growth promotion -- 7.6.2 Bacterial-assisted biodegradation -- 7.6.3 Biotransformation of HM -- 7.6.4 Bioleaching -- 7.6.5 Mobilization -- 7.6.6 Solubilization -- 7.6.7 Volatilization -- 7.6.8 Sequestration/accumulation -- 7.7 Case studies of PGP bacteria-assisted phytoremediation -- References -- Chapter 8 -- Recent advances in microbial-aided phytostabilization of trace element contaminated soils -- 8.1 Introduction -- 8.2 Phytostabilization -- 8.2.1 TE behavior in soils -- speciation and mobility -- 8.2.2 TE uptake and transfer in plant tissues -- 8.2.3 Plant tolerance to TE toxicity -- 8.2.4 Plant's selection -- 8.3 Aided phytostabilization -- 8.3.1 Effect of microbial amendments on soil properties -- 8.3.2 Microbial amendment's effect on TE immobilization. -- 8.3.3 Microbial amendment's effect on plant growth and development -- 8.3.4 Combined use of amendments -- 8.4 Future scope -- 8.4.1 Limitations of aided phytostabilisation -- 8.4.2 Future scope: Phytomanagement of TE-contaminated soils -- 8.5 Conclusion -- Acknowledgments -- References -- Chapter 9 -- Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fungi -- 9.1 Introduction -- 9.2 Sources of HMs in soil -- 9.2.1 Natural processes -- 9.2.2 Anthropogenic processes -- 9.3 Adverse impacts of HMs -- 9.3.1 Impacts on the environment -- 9.3.2 Impact on the soil microbes and its enzymatic activity -- 9.3.3 Impact on the plants and animals -- 9.3.4 Impact on human health -- 9.4 Remediation of metal contaminated soil -- 9.4.1 Phytoremediation -- 9.5 Arbuscular mycorrhizal fungi -- 9.5.1 AMF as mediators of phytoremediation processes -- 9.5.2 Mechanisms of detoxification involving the association of mycorrhizal fungi and plants. 
505 8 |a 9.5.3 Mechanisms involving the retention by fungal structures -- 9.6 Biochemical mechanisms -- 9.6.1 Chelating agents and enzymes -- 9.6.2 Gene expression mediated by AMF -- 9.7 Conclusion -- References -- chapter 10 -- Role of Pb-solubilizing and plant growth-promoting bacteria in Pb uptake by plants -- 10.1 Introduction -- 10.2 Presence and forms of Pb in soil -- 10.3 Phytoextraction of Pb from contaminated soils -- 10.4 Microbe-assisted Pb phytoextraction -- 10.5 Pb solubilization mechanisms by bacteria -- 10.5.1 Acidolysis -- 10.5.2 Redoxolysis -- 10.5.2.1 Bio-reduction -- 10.5.2.2 Bio-oxidation -- 10.5.3 Complexolysis -- 10.5.3.1 Low molecular weight organic acids -- 10.5.3.2 Siderophores -- 10.5.3.3 Biosurfactants -- 10.6 Effect of bacteria on plant growth in Pb-contaminated soils -- 10.6.1 Production of phytohormones -- 10.6.1.1 Auxins -- 10.6.1.2 Cytokinins -- 10.6.1.3 Gibberellins -- 10.6.2 Improvement of plant nutrition -- 10.6.2.1 Phosphorus solubilization -- 10.6.2.2 Siderophore production -- 10.6.2.3 Nitrogen fixation -- 10.6.2.4 Improvement of nutrient uptake -- 10.6.3 ACCD production -- 10.6.4 Triggering plant antioxidant system -- 10.7 Effects of bacterial inoculations on Pb phytoextraction -- 10.7.1 Effects of PGPBs on Pb phytoextraction -- 10.7.2 Effects of Pb-solubilizing PGPBs on Pb phytoextraction -- 10.8 Conclusions -- References -- Chapter 11 -- Role of Cd-resistant plant growth-promoting rhizobacteria in plant growth promotion and alleviation of the p ... -- 11.1 Introduction -- 11.1.1 Plant growth promoting rhizobacteria and their classification -- 11.1.2 Loading of Cd in the environment -- 11.1.3 Toxic effects of Cd on plants, humans, and microorganisms -- 11.2 Cadmium-resistant PGPR -- 11.3 Cadmium-resistance mechanisms in PGPR -- 11.3.1 Cd removal by several efflux systems. 
650 0 |a Phytoremediation. 
650 7 |a Phytoremediation.  |2 fast  |0 (OCoLC)fst01063324 
700 1 |a Bauddh, Kuldeep. 
700 1 |a Ma, Ying. 
776 0 8 |i Print version:  |z 0128234431  |z 9780128234433  |w (OCoLC)1273077497 
776 0 8 |i Print version:  |t ADVANCES IN MICROBE-ASSISTED PHYTOREMEDIATION OF POLLUTED SITES.  |d [S.l.] : ELSEVIER, 2022  |z 0128234431  |w (OCoLC)1273077497 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128234433  |z Texto completo