Cargando…

Fundamentals of low emission flameless combustion and its applications

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hosseini, Seyed Ehsan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London,UK : Academic Press, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Fundamentals of Low Emission Flameless Combustion and Its Applications
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Fossil fuel crisis and global warming
  • 1. Introduction
  • 2. Fossil fuels combustion emissions
  • 3. Emission reduction in combustion systems
  • 4. Conclusion
  • References
  • Chapter 2: Ultra-lean combustion mode
  • 1. Introduction
  • 2. Basic terminology and characteristics of ultra-lean combustion
  • 2.1. Equivalence ratio
  • 3. Experimental and numerical studies on ultra-lean combustion mode
  • 3.1. Ultra-lean hydrogen flames
  • 3.2. Ultra-lean methane flames
  • 3.2.1. Heat-recirculating burners
  • 3.2.2. Supported laminar flames
  • 3.2.3. Turbulent (swirl-stabilized) flames
  • 3.2.4. Internal combustion engines
  • 3.3. Ultra-lean dimethyl ether flames
  • 3.3.1. Laminar ultra-lean flames of preheated dimethyl ether/air mixtures
  • 4. Conclusion
  • Acknowledgments
  • References
  • Chapter 3: Historical background of novel flameless combustion
  • 1. Introduction
  • 2. Exhaust gas recirculation and flameless combustion
  • 2.1. Early investigations in flameless combustion
  • 3. Modeling aspects of flameless combustion-A brief history
  • 4. Importance of geometry selection in flameless combustion
  • 5. Flameless combustion of low graded fuels
  • 6. Flameless combustion for gas turbines
  • 7. Summary
  • References
  • Chapter 4: High-temperature air flameless combustion
  • 1. Fundamentals of flameless combustion
  • 1.1. Basic concepts
  • 1.2. Flame characteristics
  • 1.3. General requirements for operation parameters
  • 1.4. Criteria of flameless combustion
  • 1.5. General characteristics
  • 2. NO formation mechanisms
  • 2.1. Thermal NO
  • 2.2. Prompt NO
  • 2.3. Fuel NO
  • 2.4. NO formation via N2O intermediate mechanism
  • 2.5. NO reduction by reburning
  • 3. Numerical modeling
  • 3.1. Standard EDC model.
  • 3.2. Extension of EDC model
  • 3.3. New extended EDC model
  • 4. Summary
  • References
  • Chapter 5: Thermodynamic analysis of flameless combustion
  • 1. Introduction
  • 2. Zero-dimensional modeling of MILD combustion in a WSR
  • 2.1. Method of obtaining Tsi and Tex
  • 2.2. Identification of MILD combustion regime
  • 2.3. Development of Tin-XO2 combustion regime map
  • 3. First and second thermodynamic-law analysis of MILD combustion in diffusion flames
  • 3.1. Description of mathematical modeling method
  • 3.2. Effect of oxidant preheating temperature (Toxi)
  • 3.3. Effect of oxidant oxygen concentration (Xo)
  • 4. Conclusions
  • Acknowledgment
  • References
  • Chapter 6: Aerodynamics issues and configurations in MILD reactors
  • 1. Introduction
  • 2. Reactor constraints for MILD combustion
  • 3. Externally enhanced MILD reactors
  • 4. MILD reactors with internal flows recirculation
  • 4.1. Axial flow reactors
  • 4.1.1. General background/conceptual map
  • 4.1.2. Single reversing (folding) reactor
  • 4.1.3. Double reversing (folding) reactor
  • 4.1.4. Closed-loop reactor
  • 4.2. Transverse flow reactors
  • 4.2.1. General background/conceptual map
  • 4.2.2. Adjacent inlet/outlet flows
  • 4.2.3. Opposite inlet/outlet flows
  • 4.2.4. Central inlet/outlet flows
  • 4.2.5. Distributed inlet/outlet flows
  • 5. Summary and remarks
  • References
  • Chapter 7: Heat transfer and its influence on MILD combustion
  • 1. Introduction
  • 2. Methane MILD combustion in a lab-scale furnace
  • 2.1. Experimental description
  • 2.2. Description of CFD simulation
  • 2.2.1. Model description
  • 2.2.2. Grid independence check
  • 2.2.3. Model validation
  • 2.2.4. CFD simulation cases
  • 2.3. Comparison between conventional and MILD combustion inside the lab-scale furnace under various Twall
  • 2.3.1. Heat transfer behaviors
  • 2.3.2. Combustion stability limit.
  • 2.3.3. Temperature and oxygen profile
  • 2.3.4. CO emission and burnout efficiency
  • 2.3.5. Chemical reaction rate
  • 3. Methane MILD combustion in a nonadiabatic perfectly-stirred reactor (PSR)
  • 3.1. Combustion regime classification in PSR
  • 3.2. Effect of heat loss on combustion regime evolution under different XO2
  • 3.3. Effect of heat loss on combustion regime evolution under different Tin
  • 3.4. Effect of diluent types on combustion regime recognition under nonadiabatic conditions
  • 4. Conclusions
  • Acknowledgment
  • References
  • Chapter 8: Direct numerical simulations of flameless combustion
  • 1. Introduction
  • 2. DNS of MILD combustion
  • 2.1. DNS of the autoigniting mixing layer
  • 2.2. DNS with internal EGR
  • 3. Physics of MILD combustion
  • 3.1. Inception of MILD combustion: Jet in hot coflow configuration
  • 3.2. Inception of MILD combustion: Role of chemical radicals
  • 3.3. Ignition and deflagration
  • 3.3.1. Combustion mode as balance in the transport equation
  • 3.3.2. Combustion mode from chemical explosive mode analysis
  • 3.3.3. Summary
  • 4. Modeling insights: A priori analysis from DNS
  • 4.1. Presumed PDF approach
  • 4.2. Partially stirred reactor approach
  • 4.3. Flamelet-generated manifold
  • 4.4. Discussion
  • 5. Conclusions and outlook
  • References
  • Chapter 9: Large eddy simulation of MILD combustion
  • 1. Introduction
  • 2. Turbulence-chemistry interaction modeling
  • 2.1. Tabulated chemistry models
  • 2.1.1. Three-stream FPV model
  • 2.1.2. Diluted FPV model
  • 2.2. Conditional source-term estimation
  • 2.3. Reactor-based models
  • 2.3.1. EDC model
  • 2.3.2. Partially stirred reactor
  • 2.3.3. Implicit combustion closures for LES
  • QLFR model
  • LFR model
  • Implicit models features
  • 2.4. Transported probability density function (TPDF)-based models
  • 2.4.1. Lagrangian probability density function method.
  • 2.4.2. Multienvironment Eulerian PDF method
  • 3. Discussion
  • 3.1. Open flame burners
  • 3.1.1. Adelaide jet-in-hot-coflow
  • 3.1.2. DJHC burner
  • Conclusion on the jet-in-hot-coflow burners
  • 3.2. Confined flame burners
  • 3.2.1. Reverse-flow combustion chamber
  • 3.2.2. Cylindrical confined combustor
  • 4. Best-practice guidelines for LES of MILD combustion
  • 4.1. Boundary conditions
  • 4.2. Computational intensity
  • 4.3. Postprocessing
  • 4.4. DNS data for LES combustion model assessment
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter 10: Coflow and counterflow burners
  • 1. Coflow burners
  • 1.1. Free jets coflow burners used in experimental and numerical studies on flameless combustion
  • 1.1.1. The jet in hot coflow burner JHC (Dally, 2002)
  • Experimental works based on the JHC burner
  • Numerical works based on the JHC burner
  • 1.1.2. Vitiated coflow burner VCB (Cabra/Dibble, 2000)
  • Experimental works based on the VCB burner
  • Numerical works based on the VCB burner
  • 1.1.3. Delft jet in hot coflow burner DJHC (Oldenhof, 2010)
  • Experimental works based on the DJHC burner
  • Numerical works based on the DJHC burner
  • 1.1.4. Laminar jet in hot coflow LJHC (Sepman, 2012)
  • 1.1.5. Distributed and flameless combustion burner DFCB (Duwig, 2012)
  • 1.2 RANS-based equations for coflow burners computation in the FC regime
  • 1.3. Confined jets coflow burners used in experimental and numerical studies on flameless combustion
  • 1.3.1. DLR burner (Meier, 2011)
  • 1.3.2. Lisbon Burner 1 (Ve�rssimo, 2011)
  • 1.3.3. Lisbon burner 2 (Rebola, 2013)
  • 1.3.4. Delft burner (Huang, 2017)
  • 1.3.5. Jinan burner (Huang, 2020)
  • 2. Counterflow burners
  • 2.1. Counterflow burners used in experimental studies on flameless combustion
  • 2.1.1. Akita burner (Maruta, 2000)
  • 2.1.2. London burner (Goh, 2013).
  • 2.1.3. Tohoku burner (Xing Li, 2014)
  • 2.2. Counterflow burners used in numerical studies on flameless combustion
  • 2.3. Mathematical formulation for the counterflow (opposed jets) burners
  • 3. Conclusion
  • References
  • Chapter 11: Numerical investigation of the flameless combustion mode of solid fuels
  • 1. Introduction
  • 2. Conversion of single solid fuel particle during combustion
  • 2.1. Particle motion and energy balance
  • 2.2. Heating and drying
  • 2.3. Devolatilization
  • 2.4. Char oxidation
  • 3. Turbulence-chemistry interaction
  • 4. Modeling of NOX formation and destruction
  • 5. Summary
  • References
  • Chapter 12: Chemical kinetics of flameless combustion
  • 1. Flameless combustion paradigm
  • 2. Chemical kinetics of MILD combustion
  • 2.1. Fundamentals of chemical kinetics
  • 2.2. Classification of kinetic models
  • 3. Global reaction mechanisms for MILD combustion
  • 4. Detailed reaction mechanisms for MILD combustion
  • 5. Effect of operating conditions: Kinetics and thermal effects
  • 5.1. Kinetics
  • 5.1.1. CO2 chemical effects
  • 5.1.2. H2O chemical effects
  • 5.1.3. Third-body efficiency
  • 5.2. Thermal effects
  • 5.2.1. Heat capacity
  • 5.2.2. Combustion temperature
  • 6. Concluding remarks
  • Acknowledgments
  • References
  • Chapter 13: Chemistry of nitrogen oxides (NOx) formation in flameless combustion
  • 1. Tackling NOx emissions via flameless combustion
  • 2. NOx formation: Mechanisms and chemical kinetics
  • 2.1. Thermal NOx
  • 2.1.1. N2O route
  • 2.1.2. NNH route
  • 2.2. Prompt NOx
  • 2.3. Fuel NOx
  • 2.3.1. Cyanides
  • 2.3.2. NH3
  • 3. Chemical effects of NOx at low temperature
  • 3.1. CH4/NH3 interactions
  • 4. The fate of fuel-N in the flameless regime
  • 4.1. HCN
  • 4.2. NH3
  • 4.3. Pyrrole
  • 5. Conclusions and outlooks
  • References.