Fundamentals of low emission flameless combustion and its applications
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London,UK :
Academic Press,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Fundamentals of Low Emission Flameless Combustion and Its Applications
- Copyright
- Contents
- Contributors
- Chapter 1: Fossil fuel crisis and global warming
- 1. Introduction
- 2. Fossil fuels combustion emissions
- 3. Emission reduction in combustion systems
- 4. Conclusion
- References
- Chapter 2: Ultra-lean combustion mode
- 1. Introduction
- 2. Basic terminology and characteristics of ultra-lean combustion
- 2.1. Equivalence ratio
- 3. Experimental and numerical studies on ultra-lean combustion mode
- 3.1. Ultra-lean hydrogen flames
- 3.2. Ultra-lean methane flames
- 3.2.1. Heat-recirculating burners
- 3.2.2. Supported laminar flames
- 3.2.3. Turbulent (swirl-stabilized) flames
- 3.2.4. Internal combustion engines
- 3.3. Ultra-lean dimethyl ether flames
- 3.3.1. Laminar ultra-lean flames of preheated dimethyl ether/air mixtures
- 4. Conclusion
- Acknowledgments
- References
- Chapter 3: Historical background of novel flameless combustion
- 1. Introduction
- 2. Exhaust gas recirculation and flameless combustion
- 2.1. Early investigations in flameless combustion
- 3. Modeling aspects of flameless combustion-A brief history
- 4. Importance of geometry selection in flameless combustion
- 5. Flameless combustion of low graded fuels
- 6. Flameless combustion for gas turbines
- 7. Summary
- References
- Chapter 4: High-temperature air flameless combustion
- 1. Fundamentals of flameless combustion
- 1.1. Basic concepts
- 1.2. Flame characteristics
- 1.3. General requirements for operation parameters
- 1.4. Criteria of flameless combustion
- 1.5. General characteristics
- 2. NO formation mechanisms
- 2.1. Thermal NO
- 2.2. Prompt NO
- 2.3. Fuel NO
- 2.4. NO formation via N2O intermediate mechanism
- 2.5. NO reduction by reburning
- 3. Numerical modeling
- 3.1. Standard EDC model.
- 3.2. Extension of EDC model
- 3.3. New extended EDC model
- 4. Summary
- References
- Chapter 5: Thermodynamic analysis of flameless combustion
- 1. Introduction
- 2. Zero-dimensional modeling of MILD combustion in a WSR
- 2.1. Method of obtaining Tsi and Tex
- 2.2. Identification of MILD combustion regime
- 2.3. Development of Tin-XO2 combustion regime map
- 3. First and second thermodynamic-law analysis of MILD combustion in diffusion flames
- 3.1. Description of mathematical modeling method
- 3.2. Effect of oxidant preheating temperature (Toxi)
- 3.3. Effect of oxidant oxygen concentration (Xo)
- 4. Conclusions
- Acknowledgment
- References
- Chapter 6: Aerodynamics issues and configurations in MILD reactors
- 1. Introduction
- 2. Reactor constraints for MILD combustion
- 3. Externally enhanced MILD reactors
- 4. MILD reactors with internal flows recirculation
- 4.1. Axial flow reactors
- 4.1.1. General background/conceptual map
- 4.1.2. Single reversing (folding) reactor
- 4.1.3. Double reversing (folding) reactor
- 4.1.4. Closed-loop reactor
- 4.2. Transverse flow reactors
- 4.2.1. General background/conceptual map
- 4.2.2. Adjacent inlet/outlet flows
- 4.2.3. Opposite inlet/outlet flows
- 4.2.4. Central inlet/outlet flows
- 4.2.5. Distributed inlet/outlet flows
- 5. Summary and remarks
- References
- Chapter 7: Heat transfer and its influence on MILD combustion
- 1. Introduction
- 2. Methane MILD combustion in a lab-scale furnace
- 2.1. Experimental description
- 2.2. Description of CFD simulation
- 2.2.1. Model description
- 2.2.2. Grid independence check
- 2.2.3. Model validation
- 2.2.4. CFD simulation cases
- 2.3. Comparison between conventional and MILD combustion inside the lab-scale furnace under various Twall
- 2.3.1. Heat transfer behaviors
- 2.3.2. Combustion stability limit.
- 2.3.3. Temperature and oxygen profile
- 2.3.4. CO emission and burnout efficiency
- 2.3.5. Chemical reaction rate
- 3. Methane MILD combustion in a nonadiabatic perfectly-stirred reactor (PSR)
- 3.1. Combustion regime classification in PSR
- 3.2. Effect of heat loss on combustion regime evolution under different XO2
- 3.3. Effect of heat loss on combustion regime evolution under different Tin
- 3.4. Effect of diluent types on combustion regime recognition under nonadiabatic conditions
- 4. Conclusions
- Acknowledgment
- References
- Chapter 8: Direct numerical simulations of flameless combustion
- 1. Introduction
- 2. DNS of MILD combustion
- 2.1. DNS of the autoigniting mixing layer
- 2.2. DNS with internal EGR
- 3. Physics of MILD combustion
- 3.1. Inception of MILD combustion: Jet in hot coflow configuration
- 3.2. Inception of MILD combustion: Role of chemical radicals
- 3.3. Ignition and deflagration
- 3.3.1. Combustion mode as balance in the transport equation
- 3.3.2. Combustion mode from chemical explosive mode analysis
- 3.3.3. Summary
- 4. Modeling insights: A priori analysis from DNS
- 4.1. Presumed PDF approach
- 4.2. Partially stirred reactor approach
- 4.3. Flamelet-generated manifold
- 4.4. Discussion
- 5. Conclusions and outlook
- References
- Chapter 9: Large eddy simulation of MILD combustion
- 1. Introduction
- 2. Turbulence-chemistry interaction modeling
- 2.1. Tabulated chemistry models
- 2.1.1. Three-stream FPV model
- 2.1.2. Diluted FPV model
- 2.2. Conditional source-term estimation
- 2.3. Reactor-based models
- 2.3.1. EDC model
- 2.3.2. Partially stirred reactor
- 2.3.3. Implicit combustion closures for LES
- QLFR model
- LFR model
- Implicit models features
- 2.4. Transported probability density function (TPDF)-based models
- 2.4.1. Lagrangian probability density function method.
- 2.4.2. Multienvironment Eulerian PDF method
- 3. Discussion
- 3.1. Open flame burners
- 3.1.1. Adelaide jet-in-hot-coflow
- 3.1.2. DJHC burner
- Conclusion on the jet-in-hot-coflow burners
- 3.2. Confined flame burners
- 3.2.1. Reverse-flow combustion chamber
- 3.2.2. Cylindrical confined combustor
- 4. Best-practice guidelines for LES of MILD combustion
- 4.1. Boundary conditions
- 4.2. Computational intensity
- 4.3. Postprocessing
- 4.4. DNS data for LES combustion model assessment
- 5. Conclusions
- Acknowledgments
- References
- Chapter 10: Coflow and counterflow burners
- 1. Coflow burners
- 1.1. Free jets coflow burners used in experimental and numerical studies on flameless combustion
- 1.1.1. The jet in hot coflow burner JHC (Dally, 2002)
- Experimental works based on the JHC burner
- Numerical works based on the JHC burner
- 1.1.2. Vitiated coflow burner VCB (Cabra/Dibble, 2000)
- Experimental works based on the VCB burner
- Numerical works based on the VCB burner
- 1.1.3. Delft jet in hot coflow burner DJHC (Oldenhof, 2010)
- Experimental works based on the DJHC burner
- Numerical works based on the DJHC burner
- 1.1.4. Laminar jet in hot coflow LJHC (Sepman, 2012)
- 1.1.5. Distributed and flameless combustion burner DFCB (Duwig, 2012)
- 1.2 RANS-based equations for coflow burners computation in the FC regime
- 1.3. Confined jets coflow burners used in experimental and numerical studies on flameless combustion
- 1.3.1. DLR burner (Meier, 2011)
- 1.3.2. Lisbon Burner 1 (Ve�rssimo, 2011)
- 1.3.3. Lisbon burner 2 (Rebola, 2013)
- 1.3.4. Delft burner (Huang, 2017)
- 1.3.5. Jinan burner (Huang, 2020)
- 2. Counterflow burners
- 2.1. Counterflow burners used in experimental studies on flameless combustion
- 2.1.1. Akita burner (Maruta, 2000)
- 2.1.2. London burner (Goh, 2013).
- 2.1.3. Tohoku burner (Xing Li, 2014)
- 2.2. Counterflow burners used in numerical studies on flameless combustion
- 2.3. Mathematical formulation for the counterflow (opposed jets) burners
- 3. Conclusion
- References
- Chapter 11: Numerical investigation of the flameless combustion mode of solid fuels
- 1. Introduction
- 2. Conversion of single solid fuel particle during combustion
- 2.1. Particle motion and energy balance
- 2.2. Heating and drying
- 2.3. Devolatilization
- 2.4. Char oxidation
- 3. Turbulence-chemistry interaction
- 4. Modeling of NOX formation and destruction
- 5. Summary
- References
- Chapter 12: Chemical kinetics of flameless combustion
- 1. Flameless combustion paradigm
- 2. Chemical kinetics of MILD combustion
- 2.1. Fundamentals of chemical kinetics
- 2.2. Classification of kinetic models
- 3. Global reaction mechanisms for MILD combustion
- 4. Detailed reaction mechanisms for MILD combustion
- 5. Effect of operating conditions: Kinetics and thermal effects
- 5.1. Kinetics
- 5.1.1. CO2 chemical effects
- 5.1.2. H2O chemical effects
- 5.1.3. Third-body efficiency
- 5.2. Thermal effects
- 5.2.1. Heat capacity
- 5.2.2. Combustion temperature
- 6. Concluding remarks
- Acknowledgments
- References
- Chapter 13: Chemistry of nitrogen oxides (NOx) formation in flameless combustion
- 1. Tackling NOx emissions via flameless combustion
- 2. NOx formation: Mechanisms and chemical kinetics
- 2.1. Thermal NOx
- 2.1.1. N2O route
- 2.1.2. NNH route
- 2.2. Prompt NOx
- 2.3. Fuel NOx
- 2.3.1. Cyanides
- 2.3.2. NH3
- 3. Chemical effects of NOx at low temperature
- 3.1. CH4/NH3 interactions
- 4. The fate of fuel-N in the flameless regime
- 4.1. HCN
- 4.2. NH3
- 4.3. Pyrrole
- 5. Conclusions and outlooks
- References.